RSS    

   Реферат: Производство молотой негашенной извести

Для производства воздушной извести применяют следующие виды известково-магнезиальных карбонатных пород: зернисто-кристаллический мраморовидный известняк; плотный кристаллический известняк; землисто-рыхлый известняк (или мел); известковый туф; известняк-ракушечник; оолитовый известняк; доломитизированный известняк; доломит.

Мрамор по химическому составу (СаСО3 или СаСО3 + MgCO3) — наиболее чистое сырье, однако в связи с высокими декоративными свойствами он используется в качестве отделочного материала, и поэтому в производстве извести, за редким исключением, не применяется.

Плотные известняки имеют мелкозернистую кристаллическую структуру, содержат обычно небольшое количество примесей и отличаются высокой прочностью. Плотные известняки наиболее широко используются для получения извести.

Мел — мягкая рыхлая горная порода, легко рассыпающаяся на мелкие куски. Его обычно обжигают лишь во вращающихся печах, так как при обжиге в шахтных печах он легко крошится, что нарушает процесс обжига.

Известняковый туф отличается ноздреватым строением и большой пористостью; иногда его используют для производства извести во вращающихся и шахтных печах (в за­висимости от прочности).

Известняк-ракушечник состоит из раковин, сцементированных углекислым кальцием. Представляет собой малопрочную горную породу, поэтому редко применяется для изготовления извести.

Оолитовый известняк — горная порода, состоящая из отдельных шариков карбоната кальция, сцементированных тем же веществом.

Доломитизированные известняки и доломиты по своим физико-механическим  свойствам сходны с плотными известняками. Иногда доломиты залегают в природе в виде рыхлых   скоплений.

Объемная масса плотных известняков составляет 2400— 2800, мела — 1400—2400 кг/м8. Влажность известняков колеблется в пределах 3—10, а мела —15—25%.

Широкое распространение карбонатных горных пород способствует развитию производства извести почти во всех экономических районах страны.

Сырьем для производства воздушной извести могут служить не только специально добываемые для этой цели карбонатные породы, но и отходы при добыче известняков для нужд металлургической, химической, строительной и других отраслей промышленности. Наконец, для этой цели в ряде случаев используются побочные продукты в виде дисперсного карбоната кальция или гидрата окиси кальция (карбонатные отходы сахарного и содового производства, гидратная известь от производства ацетилена и др.).


I.II Материал и требования к нему

До недавнего времени воздушную известь применяли в строительстве только в гашеном виде.

В 30-х годах И. В. Смирнов предложил применять из­весть в тонкоизмельченном нагашеном виде. Он, а затем и Б. В. Осин показали, что при определенных условиях воз­можно гидратное твердение негашеной извести, т. е. тверде­ние при взаимодействии с водой с образованием гидрата окиси кальция подобно тому, как твердеет портландцемент или гипс при реакции их с водой с возникновением гидратных новообразований.

Тонкоизмельченная негашеная известь имеет ряд преи­муществ при изготовлении растворов и бетонов перед гидратной известью в виде порошка или теста. В этом случае нет отходов и все компоненты тонкоизмельченной извести рационально используются во время твердения (в том числе силикаты, алюминаты, ферриты и карбонат кальция). Мо­лотая негашеная известь характеризуется меньшей водопотребностью, чем гашеная известь. Удельная поверхность молотой негашеной извести обычно значительно меньше удельной поверхности гидратной извести. Поэтому требуе­мую удобоукладываемость растворной или бетонной смеси на молотой негашеной извести получают при пониженном количестве воды. Снижение же водопотребности растворных и бетонных смесей способствует увеличению их прочности при твердении. Кроме того, негашеная известь, гидратируясь в уже уложенных в дело растворах и бетонах, связывает большое количество воды, переходящей в твердую фазу. Как известно, окись кальция при переходе в гидрат свя­зывает 32,13% воды от своей массы. Все это способствует получению растворов, бетонов и изделий на молотой негашеной извести повышенной плотности и прочности по срав­нению с получаемыми на гашеной извести.

При гидратном твердении молотой негашеной извести вы­деляется значительное количество тепла. Поэтому изделия на такой извести при температурах ниже нуля твердеют бо­лее спокойно и имеют лучшие показатели прочности, так как окружающие условия способствуют быстрому отводу тепла и уменьшению термических напряжений.

Указанные преимущества молотой негашеной извести способствуют ее применению в производстве различных строительных материалов и изделий.

Благоприятные результаты при гидратном твердении молотой негашеной извести можно получить лишь при сле­дующих условиях, обеспечивающих нормальный ход про­цессов ее твердения:

·     применение извести тонкого помола;

·     соблюдение определенного водоизвесткового отношения;

·     отвод тепла или использование других приемов, не до­пускающих разогревания твердеющего раствора или бетона до температур, вызывающих интенсивное испарение воды (особенно при кипении);

·     прекращение перемешивания растворной или бетонной смеси на определенном этапе гидратации извести.

При грубом помоле извести создаются условия для воз­никновения местных очагов перегрева материала, кипения воды и разрыхления структуры схватывающихся новооб­разований, что сопровождается появлением значительных растягивающих напряжений и деформаций, вызывающих снижение прочности, а иногда и разрушение твердеющего раствора или бетона. Поэтому негашеную известь следует измельчать до удельной поверхности 3500—5000 см2/г, причем остаток на сите № 02 должен быть близким к нулю, а на сите № 008 не превышать 4—6%.

Отрицательно влияет на гидратное твердение негашеной извести пережог. Замедленная гидратация крупных крис­таллов окиси кальция (крупнее 10—20 мкм) в уже затвер­девшем известковом камне вызывает дополнительные неком-пенсируемые напряжения. Поэтому количество пережога в молотой негашеной извести не должно превышать 3—5%. Гидратное твердение негашеной извести протекает нор­мально при содержании воды в растворной или бетонной смеси лишь в пределах 100—150% массы извести. Точнее количество воды устанавливают с учетом интенсивности отвода тепла и скорости гидратации извести в растворной или бетонной смеси. При малом содержании воды (60—80% массы извести) температура резко повышается и интен­сивно образуется пар, который разрыхляет структуру, пре­пятствуя схватыванию и твердению массы. При избытке воды (200—250%) частицы извести отделяются одна от дру­гой водными пленками, адсорбирующимися на их поверх­ности, и образуется несхватывающаяся и очень медленно твердеющая пластическая масса.

При гидратации нормально обожженной извести практи­чески в течение первого часа после затворения ее водой выделяется 1160 кДж на 1 кг окиси кальция. В результате из­делие из раствора или бетона на молотой негашеной извести сильно разогревается, причем, если температура поднима­ется до 100° С, возникают те отрицательные явления, о которых говорилось раньше. Для предупреждения интенсивно­го разогревания смеси при гидратации извести используют различные приемы и, в частности, несколько увеличивают расход воды, охлаждают ее, частично гасят известь перед ее применением и т. п.

Одним из простых способов является замедление скорости гидратации, а следовательно, и интенсивности тепловыделения с помощью различных веществ (гипса, сульфата натрия, сульфитно-дрожжевой бражки и др.). ССБ, СДБ и им подобные поверхностно-активные вещества, вводимые в воду для гашения в количестве 0,2—1%, адсорбируются на кристаллических зародышах гидрата окиси кальция, препятствуя их росту и замедляя вследствие этого дальнейшее растворение в воде и гидратацию окиси кальция. Возможно, что поверхностно-активные вещества уменьшают скорость гашения также вследствие адсорбции их на частичках окиси  кальция.

Замедление скорости гидратации при добавках 2—5% гипса от массы извести объясняют образованием пленок гидрата окиси и сульфата кальция на поверхности еще не прореагировавших частичек окиси кальция.

В тех случаях, когда известь наряду с очень активными частичками окиси кальция содержит медленно гасящиеся частички пережога, целесообразно в соответствии с рекомендациями Б. Н. Виноградова применять комбинированную добавку, состоящую из замедлителя и ускорителя гашения. Ускоритель в составе добавки действует преимущественно на пережженные частички, значительно ускоряя их гашение и обеспечивая их превращение в гидрат до твердения системы. Так влияет, например, смесь СДБ и хлористого кальция. Необходимое количество добавок нужно устанавливать опытом для каждой партии извести с учетом ее свойств.

Наконец, при гидратном твердении молотой негашеной извести необходимо на определенной ступени взаимодействия ее с водой прекращать механические воздействия на растворную или бетонную смесь.

Перемешивание, вибрация и т. п. в течение всего периода гидратации извести нарушают ее схватывание и твердение. Точным же регулированием продолжительности механических воздействий на растворные и бетонные смеси во время их перемешивания в мешалках или вибрации в формах можно добиться гидратации какой-то части окиси кальция. Она будет происходить в условиях свободных де­формаций смеси с последующим гидратным твердением остальной части в спокойном состоянии без нарушения возникающих структурных связей между образующимися час­тичками гидрата окиси кальция.

На практике такой эффект дает двухступенчатое перемешивание растворных или бетонных смесей на молотой негашеной извести, заключающееся в следующем. Вначале смесь извести с заполнителями и водой, взятой в количестве 80—90% общего ее содержания, перемешивают 2—3 мин и затем выдерживают 0,5—1 ч. При этом гидратируется наиболее активная часть извести, что сопровождается интенсивными объемными деформациями. После такой выдержки, продолжительность которой в зависимости от извести уточняют опытным путем, вторично перемешивают смесь с остальной частью воды и укладывают ее в формы (при изготовлении изделий). В формах в спокойном состоянии и протекает твердение бетона, обусловливаемое гидратацией еще непрореагировавшей части окиси кальция. Возникающие при этом деформации уже не столь интенсивны и не разрушают изделия.

Страницы: 1, 2, 3, 4, 5, 6


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.