RSS    

   Реферат: Проектирование вертикально фрезерного станка

Силовой расчет привода главного движения.

1. Определяем  эффективную мощность станка по формуле:

Nэф = Pz * V / 61200  , кВт

     где  Pz - тангенциальная составляющая усилия резания, Н

             V - скорость резания, м/мин.

2. Определим скорость резания по формуле:

V = ( Cv * Dq/ (Tm * tx * Sy * Bu * zp) ) * Kv ,м/мин

    где T - стойкость фрезы, мин табл. 40 [1]

           C - коэффициент и показатели степеней в табл. 39 [1]

         D - диаметр обрабатываемой заготовки

         B  - ширина фрезы

         Sz - подача на один зуб

Kv = Kmv * Knv * Kиv ;

    где Kmv - коэффициент учитывающий качество обрабатываемого материала , табл.1-4 [1]

         Knv  - коэффициент учитывающий состояние поверхности заготовки, табл.5 [1]

         Kиv - коэффициент учитывающий материал инструмента, табл.6 [1]

    Подставляем полученные значения:

Kv = 1 * 1 * 0.9 = 0.9

V = ( 700 * 1600.17) / (2000.33 * 30.38 * 0.180.4 * 1600.08 * 260.1) * 0.9 = 126 м/мин

3. Определим частоту вращения шпинделя по формуле:

n = 1000V / pdmax ,об/мин

     где dmax - максимальный диаметр заготовки.

n = 1000 * 125 / p * 160 = 246 об/мин

Ближайшее стандартное значение из ряда чисел оборотов - 250 об/мин.

Согласно полученной частоте вращения уточняем скорость резания:

V = p * 160 * 250 / 1000 = 125 м/мин

4. Определим составляющую силы резания - окружную силу по формуле:

Pz = (10Cp * tx * Szy * Bu * z / (Dq * nw )) * Kmp , H

       где   значение всех коэффициентов и Cp - табл.41 [1]

                Kmp - поправочный коэффициент, табл. 9 [1] = 1

Pz = 10 * 101 * 30.88 * 0.180.75 * 160 * 26 / (1600.87 * 2500) * 1 = 3691 H

5. Найдем крутящий момент на шпинделе станка по формуле:

Mкр = Pz * D / z * 100 = 3691 * 160 / 200 = 2952.8 H

Подставим вычисленные значения в формулу эффективной мощности:

Ne = 3691 * 125 / 1020 * 60 = 7.54 кВт

6. Определим мощность холостого хода.

Nхл = 4*10-6 * dcp * (pn * n1 * c*dшп / dср * n) , кВт

     где  dср - среднее арифметическое диаметров всех опорных шеек коробки скоростей, мм

             dшп - среднее арифметическое диаметров всех опорных шеек шпинделя, мм

             c = 1.5 - коэффициент для подшипников качения.

              pn - количество передач, участвующих в передаче от входного вала к шпинделю.

Nхл = 4*10-6 * 45 * ( 3*900+1.5 * 68.4/40 * 380) = 0.6 кВт

7. Определяем расчетный КПД привода главного движения и привода подач.

hp = hзуб  * hвчс ,

   где h - КПД передач и подшипников качения.

hp  = 0.99 * 0.9 = 0.891

8. Определим мощность электродвигателя.

Nдв = (0.8 ¸ 1) * (Nэф / 0.74 + Nx) ; кВт

Nдв = 0.8 (7.54 / 0.74 + 0.5) = 8.6 кВт

По таблице 248[3] выбираем электродвигатель - 132М4 / 1460.

9. Определим коэффициент полезного действия:

Nст = hp * (1- Nx / Nдв.ср )

Nст = 0.74 * ( 1 - 0.5/10) = 0.71

10. Определим крутящие моменты на каждом валу коробки скоростей по формуле:

Mk = 9740 * Nдв * h / np   , н*м

      где np - расчетная частота вращения вала, мин-1

             h  - КПД механизма от вала электродвигателя до рассматриваемого вала.

Первый вал:

Mk1 = 9740 * 10 * 0.95 / 1000 = 92.5 H*м

Второй вал:

Mk2 = 9740 * 10 * 0.93 / 500 = 185  H*м

Третий вал:

Mk3 = 9740 * 10 * 0.90 / 160 = 578  H*м

Шпиндель

Mшп = 9740 * 10 * 0.89 / 50 = 1850  H*м

11. Определим тяговое усилие по формуле:

Q = M (Pz + G) +k*Px  , H

      где  G = 3*103 - вес перемещающихся частей;

              M = 0.16   -  приведенный коэффициент трения;

              K = 1.12 - коэффициент. учитывающий опрокидывающий момент.

              Px -  составляющая сила резания, определяется по формулам теории резания [1], H

Px = (10Cp / 1) * tx * Szy * Vh * Kp

      Значения Cp и показателей степеней по табл.12 [1]

Px = 10 * 150 * 2.41 * 2.60.4 * 80-0.3 * 1 = 3267 H

Q = 0.16 * ( 3691 + 3000) + 1.12 * 3267 = 4729.6 H

              

Прочностной расчет основных элементов привода главного движения.

1. Определим предварительно диаметры всех валов по формуле:

di = 103 * Ö Mki / (0.2 *[s]пр) ,мм

    где  [s]пр  = 3*107 - допустимое напряжение кручения.

d1 = 103 * 3Ö 92/ 0.2*3*107   = 32 мм

d2 = 103 * 3Ö 185/ 0.2*3*107   = 44 мм

d3 = 103 * 3Ö 578/ 0.2*3*107   = 53 мм

Расчетные значения каждого вала округляем до ближайшего стандартного значения и получаем

d1 = 35 мм, d2 = 40 мм, d1 = 50 мм.

2. Определим модули групп передач из условия прочности на изгиб:

m = 3Ö 2Mk*Kg*Kh / (y*y1*Ke*z1*[s]n)   ,мм

    где Mk - крутящий момент, н*м

         Kg - коэффициент динамической нагрузки (1.05 ¸ 1.17)

         Kh - коэффициент неравномерности нагрузки (1.06 ¸ 1.48)

         y  = 6¸8 - коэффициент ширины

          y1 = 0.4 ¸0.5 - коэффициент формы

            Ke = 0.01 - коэффициент одновременности зацепления 

          z1 - число зубьев шестерни

          [s]n - допустимое напряжение на изгиб, находится как:

[s]n = ((1.3 ¸ 1.6) s-1 / [n]*Rs ) * Rph ,

     где s-1 = 438 H/мм2 - предел выносливости

            [n] = 1.5 - допустимый коэффициент запаса

             Rs = 1.5 - эффективный коэффициент концентрации напряжения

             Rph = 1 - коэффициент режима работы.

[s]n = 1.5 * 438 / 1.52 * 1 = 185 H/мм2

Первая группа зубчатых колес:

m1 = 3Ö 2*92*1.17*1.48 / (6*0.4*241*185*0.01) = 1.7

Вторая группа зубчатых колес:

m2 = 3Ö 2*185*1.17*1.48 / (6*0.4*57*185*0.01) = 2

Третяя группа зубчатых колес:

m3 = 3Ö 2*578*1.17*1.48 / (6*0.4*62*185*0.01) = 2.3

3. Определяем межосевое расстояние по формуле:

A = (u+1) * 2Ö (340/[sk])2 + Mk / (yва * u * Ru) ,мм

    где [sk] = 1100 МПа - допустимое контактное напряжение.

            yва = 0.16 - коэффициент ширины колеса.

             Rn = 1 - коэффициент повышения допустимой нагрузки.

              u  - передаточное отношение.

u = 1/in ;

   Получаем:

A1 = (2.8 +1) 3Ö (340/1100)2 + 92*103 / 0.16 * 2.8  = 94  мм

A2 = (2.8 +1) 3Ö (340/1100)2 + 185*103 / 0.16 * 2.8  = 120   мм

A3 = (2.8 +1) 3Ö (340/1100)2 + 578*103 / 0.16 * 2.8  = 150  мм

4. Уточним значения модулей из условия:

m = (0.01 ¸ 0.02)A ,мм

m1 = 0.02 * 94 = 1.8 = 2

m2 = 0.02 * 120 = 2.1 = 2

m3 = 0.015 * 150 = 2.2 = 2

5. Проведем уточненный расчет валов

     Уточненный расчет валов на прочность производим для третьего вала, как наиболее

      нагруженного. Построим эпюры крутящих моментов:

Эпюра моментов.

                         Rax     Ray                                                  TB      Rbx         Rby   

                                                        C                                 D

        A                       T6      P6                              P13                 B

                        300                       215                  40

                          Rax                            P6                               P13        Rbx

         

                         Mx

                           Ray                                            T6                       T13               Rby

               

     My

Mk = 578 * 103    H*мм

Pi = 2Mk / dшi

Ti = Pi * tg 20°

d6 = 60  мм

d13 = 120 мм

P6 = 2*578*103 / 60 = 19266.7  H

T6 = tg20° * 19266.7  = 7012 H

P13 = 2*578*103 / 120 = 9634  H

T13 = tg20° * 9634 = 3506  H

6. Определим реакции опор:

P6 * AC + P13 * AD - Rbx * AB = 0

Rbx = 19354 H

Rax = P6 + P13 - Rbx = 9546.6  H

T6 * AC - T13 * AD + Rbx * AB = 0

Rby = 540 H

Ray = T6 - T13 + Rby = 9978 H

7. Произведем предварительную оценку вала и уточненный расчет на прочность.

sпр = Ö Mu2 + 0.75Mk2 / W  £ [s]u = 80 МПа.

           где sпр - приведенное напряжение

                   Mu - max изгибающий момент в описанном сечении Н*м

                   W - момент сопротивления изгибу в описанном сечении, мм3

Mu = Ö Mx2 + My2     ,н*м

           где Mx и  My - максимальные моменты в опасном сечении, н*м

Mu = Ö 19002 + 5462  = 1976  H*м

W = 0.1 * d3 , мм2

           где d - диаметр вала, мм

W = 0.1 * 503 = 12500   мм3

 

sпр = Ö19762 + 0.75 * 578 / 12500 = 17.8 = 18 МПа < 80  МПа

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ.

1. Косилова А.Г. и Мещерякова Р.К. Справочник технолога-машиностроителя. Том2

        -М.: Машиностроение, 1985.

2. Ицкович Г.М. и др. Курсовое проектирование деталей машин.

        -М.: Машиностроение, 1970.

3. Детали машин. Примеры и задачи. /Под общей редакцией С.Н.Ничипорчика

    -М.: Вышэйшая школа, 1981.

4. Дунаев П.Ф. Леликов О.П. Конструирование узлов и деталей машин.    

       -М.: Высшая школа, 1985.

5. Гузенков П.Г. Детали машин. -М.: Высшая школа, 1975.


Страницы: 1, 2, 3


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.