RSS    

   Реферат: Измерение уровня жидкого металла в кристаллизаторе МНЛЗ

Аналогичный измеритель разработан фирмой "CEDA" ("ЧЕДА"), Италия. Измеритель также работает на основе принципа инфракрасного излучения от ван­ны жидкого металла в кристаллизаторе, однако в отличие от ранее рассмотренно­го, не требует перенастройки при изменении размеров кристаллизатора. Это обу­славливается тем, что работа измерителя основывается на представляющим инте­рес принципе облучения покрытой шлаком ванны жидкого металла в кристаллизато­ре мощным монохроматическим излучением в области спектра, для которой слой шлака является достаточно прозрачным и на который посторонние источники света не влияют. Отраженный от поверхности чистого металла поток инфракрасного излу­чения детектируется оптоэлектронным датчиком. При этом изменение температуры металла, интенсивности его свечения, а также посторонние источники света и шлак не оказывают влияния на показания прибора. Система используется в настоя­щее время на ряде сортовых МНЛЗ заводов Италии, обеспечивая точность измере­ния уровня ±10 мм.

Метод контроля уровня металла в кристаллизаторе основанный на использовании вихревых токов, индуктируемых ка­тушкой, размещенной над зеркалом жидкого металла в кристаллизаторе.

Интересный метод контроля уровня металла в кристаллизаторе предложен фирмой "Ниппон кокан", Япония. Метод основан на использовании вихревых токов, индуктируемых ка­тушкой, размещенной над зеркалом жидкого металла в кристаллизаторе.[3] Изме­рительная катушка полу­чает питание от высокоча­стотного генератора (50 кГц) через усилитель с положительной обратной связью. В зависимости от положения зеркала метал­ла полное сопротивление измерительной катушки, зависящее от ЭДС, наводи­мой в ней вихревыми тока­ми, также изменяется, что служит мерой положе­ния уровня жидкого метал­ла в кристаллизаторе. Из­мерительная катушка раз­мещена в защитном керами­ческом стакане, охлаждае­мым воздухом. Постоянная времени комплекта составляет менее 0,2 с, точностью измерения ±1 мм

 На рис.7 приведена структурная схема устройства

Рис.7. Схема измерителя уровня металла в кристалли­заторе, разработанного фирмой "Ниппон кокан", Япония:

I - усилитель обратной связи; 2 - осциллятор; 3 - детектор; 4 - реактивная катушка; 5 - основной блок; .6 - измерителная катушка; 7 - зеркало ванны; 8 -магнитное поле; 9 - кристаллизатор; 10 - ванна жидкого металла; II - вихревые токи.

В СССР также ведутся работы по поиску новых методов контроля уровня жидкого металла в кристаллизаторе. Так, в Институте проблем управления разрабо­тан датчик уровня жидкого металла в кристаллизаторе, использующий энергию вы­сокочастотных частотно-модулированных колебаний.

Энергия высокочастотных колебаний подводится от генератора к резонансно­му контуру, образованному струей жидкого металла, которая охватывается кольце­вым проводником с подключенным к нему высокочастотной коаксиальной линией свя­зи от генератора, кристаллизатором и жидким металлом промежуточной емкости. Струя жидкого металла в этом случае играет роль короткозамкнутого отрезка, нижний конец которого образован электрическим замыканием струи металла и жид­кого металла в кристаллизаторе.

Кольцевой проводник датчика измерительного устройства, охватывая струю металла, поступающего в кристаллизатор, образует с ней электрическую емкость, через которую и осуществляется бесконтактный подвод высокочастотной энергии от генератора к отрезку контура.

При индуктивном характере входного комплексного сопротивления отрезка, образованного струей жидкого металла, емкость связи кольцевого проводника об­разует с эквивалентной индуктивностью этого отрезка последовательный колеба­тельный контур, подключённый в качестве нагрузки к линии связи с генератором возбуждения. Резонансная частота контура является функцией величины эквивалент­ной индуктивности и, следовательно, положения уровня металла в кристаллизаторе.

 Теперешние требования к качеству стали обусловливают необходимость высокой точности па­раметров процесса непрерывного литья. Между тем, особенно при регулировании уровня жидкого металла в кристаллизаторе применявшиеся прежде традицион­ные способы при некоторых ситуациях процесса удов­летворительных результатов не давали. Описанная ниже модульная система регулирования уровня жидко­го металла реагирует на изменения процесса быстрее и обеспечивает постоянство поддержания уровня

ДАТЧИКИ СИСТЕМ АВТОМАТИЧЕСКОГО ПОДДЕРЖАНИЯ УРОВНЯ МЕТАЛЛА В КРИСТАЛЛИЗАТОРАХ МНЛЗ

Система автоматического поддержания уровня металла в кристаллизаторе (САПУМК) МНЛЗ является одной из основных при разливке стали, определяющей качество получае­мого слитка.[4]

Типовым составом САПУМК является датчик уровня металла (ДУМ), содержащий пер­вичный преобразователь, преобразующий перемещение уровня металла в электрический сигнал, и вторичный преобразователь, формирующий нормированный выходной сигнал, микропроцессорное устройство, задающее закон поддержания уровня и управляющие ис­полнительным устройством — приводом стопорного механизма или шиберного затвора.

По физическим принципам измерения датчики уровня металла САПУМК классифициру­ются:

"изотопные" ;

"электромагнитные" (токовихревые);

"тепловые" (с использованием встроенных в кристаллизатор датчиков температуры;

"оптические";

"ультразвуковые";

"радиометрические";

"электромеханические".

Промышленно применимыми в САПУМК являются (по степени распространенности): изотопные и электромагнитные. Остальные не нашли широкого применения, например "те­пловые", или являются "экзотическими".

Наибольшее распространение получили изотопные ДУМ, как наиболее компактные и поддающиеся встройке в конструкцию кристаллизатора. Изотопные ДУМ состоят из источ­ника -из-лучения (Со60, Cz137) и точечного приемника излучения, расположенного в стенках кристаллизатора. Изотопные ДУМ позволяют измерить уровень металла в кристаллизаторе до 180 мм от среза кристаллизатора при точности поддержания уровня по разным источни­кам: от ±5 мм до ±3 мм.

Недостатки изотопных ДУМ: радиационная опасность; относительно низкое соотношение сигнал - шум; нелинейность характеристики; чувствительность к шлакообразующей смеси.

Достоинства изотопных ДУМ: конструктивная и технологическая "отработанность" прием­ника, излучателя и узлов встройки в кристаллизатор; простота эксплуатации; простота ка­либровки, нечувствительность к электромагнитным полям (возможно совмещение с систе­мой перемешивания металла в кристаллизаторе).

Основными поставщиками изотопных ДУМ в страны СНГ являются ПО "Промавтоматика" (г. Киев) и фирма "Bertoldf, значительно укрепившая свои позиции поставщика, после рас­пада СССР. В настоящее время в связи настойчивым желанием ряда металлургических комбинатов снизить количество импортных поставок, появились разработки отечественных приемников и источников -излучения, конструктивно повторяющие уже применяемые. Предприятия атомной промышленности готовы поставлять источники и производить пере­зарядку использованных источников. По этому пути, пошли металлургические комбинаты: ОАО "ОЭМК" и ОАО "НТМК".

Разработка электромагнитных (токовихревых) ДУМ (ЭДУМ) была инициирована пробле­мой повышения безопасности, используемого в металлургии оборудования.

Успешными разработками можно считать ЭДУМ конструкции фирмы "Ниппон кокан" (Япония)  и "Раутаруукки", устанавливаемых над зеркалом металла, а также конст­рукция фирмы IRM , встраиваемая в кристаллизатор.

Конструкция ЭДУМ фирмы "Ниппон кокан" представляет собой две группы обмоток (ка­тушек), расположенных на магнитопроводе и защищенных от нагрева со стороны разли­вочного стакана и жидкого металла керамическим кожухом. Дополнительной защитой от нагрева является поток воздуха, подводящийся извне от внешнего источника, и определен­ным образом циркулирующий вокруг обмоток (катушек) внутри керамического кожуха. Пер­вая группа обмоток, включенная между собой согласно, является обмотками возбуждения, к которым подводится питающие ЭДУМ переменное напряжение с частотой в диапазоне от 1,5 до 4 кГц. Вторая группа, являющаяся сигнальными обмотками, включена между собой встречно. Указанный диапазон частот питающего напряжения обеспечивает наименьшее влияние проводимости шлакообразующей смеси. Опытным путем было получено, что при более высоких частотах питающего напряжения, например, 20-50 кГц, ЭДУМ измеряет уровень расплавленного шлака, а не расплавленного металла.

ЭДС, наведенная на сигнальных обмотках, зависит от расстояния между ЭДУМ и зерка­лом расплавленного металла по существенно нелинейному закону.

ЭДУМ конструкции фирмы "Ниппон кокан" закреплен на специальном штативе, который перемещается разливщиками вручную и устанавливается при измерении уровня металла на край кристаллизатора. Отличительной особенностью данной конструкции является ее простота, что позволило ряду фирм, например, в Китае и в России, повторить эту конструк­цию в тех или иных вариантах.

Недостатки:

-  неудобство в работе из-за наличия кабелей связи и шланга, подводящего охлаждаю­щий воздух, которые в большинстве случае находятся непосредственно на разливочной
площадке и подвержены механическим и тепловым воздействиям, а также могут ограничивать действия разливщика;

-  неудобства в работе из-за появления дополнительных операций для разливщика: "опе­рации установки и снятия" ЭДУМ в начале и в конце разливки, а также в аварийных ситуациях (дополнительно затрачивается от 5 до 15 с на выполнение операций "снятие ЭДУМ" и
"уборка в безопасное место");

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.