RSS    

   Реферат: Измерение уровня жидкого металла в кристаллизаторе МНЛЗ

Физические основы

В основе измерения при помощи искусственных радиоактивных изотопов лежит принцип поглощения радиоактивного излучения соответствующим материалом, содержащимся в резервуаре. Пучок γ-лучей, излучаемый радиоактивным источником, проникает через резервуар по прямой линии (рис. 3). На стенке резервуара, лежащей против излучателя, расположен приемник, преобразую­щий принятые лучи в электрические импульсы. Вследствие по­глощения радиоактивных лучей материалом внутри резервуара интенсивность принятого излучения зависит от высоты уровня.

Рис. 3. Схема радио­активного сигнализатора уровня:

1 - излучатель; 2 - при­емник

Возникающие на выходе приемника им­пульсы, частота которых пропорциональна интенсивности излучения, подводятся к пе­реключающему устройству, реле которого срабатывает, как только число импульсов в единицу времени достигнет минимальной величины. Ввиду того что в большинстве случаев измеряют толстые слои материала, используют преимущественно γ -лучи. Большое влияние на процесс измерения оказывают стенки резервуара, обладающие иногда значительной толщиной. Исходную интенсивность прони­кающего через заполненный резервуар излучения рассчитывают следующим образом:

 

При пустом резервуаре она равна . Таким об­разом,  отношение величин интенсивности

где dw, — толщина стенки резервуара; pi — плотность содержи­мого; di — внутренний диаметр резервуара; μ — массовый коэф­фициент поглощения; рw — плотность материала стенки.

Такое же выражение имело бы место и для теоретического случая, когда стенки отсутствуют, т. е. толщина и плотность стенки не оказывают влияния на ослабление. Однако необходимо учитывать, что при наличии металлических стенок большой тол­щины происходит рассеяние, оказывающее заметное влияние на направление и интенсивность излучения. В принципе для толстых стенок необходимо использование радиоактивного препарата более высокой энергии. Для того чтобы практически иметь дело по воз­можности со слабыми препаратами и, следовательно, с минималь­ной радиационной защитой, расстояние между излучателем и при­емником должно быть минимальным. В доменных печах, вагран­ках, шахтных известковообжигательных печах, например, этого можно достичь благодаря уменьшению толщины стенки в местах установки излучателя и приемника путем применения трубок, заделанных с переднего конца. Кроме того, можно приобрести также излучатели с двойной защитной оболочкой. Такая оболочка, состоящая обычно из высококачественной стали, предотвращает рассеяние радиоактивного материала и тем самым загрязнение окружающей среды радиоактивными веществами.

Ослабление мощности излучения радиоактивного излучателя вследствие поглощения воздухом происходит по квадратичному закону. Степень поглощения радиоактивного излучения твердыми и жидкими материалами зависит в первую очередь от их плот­ности.

Измерение уровня

При ступенчатом измерении уровня посредством радиоактивных изотопов можно использовать различные варианты размещения излучателей (рис.4). Существует возможность сигнализации предельного уровня или измерения ступенями с большей или меньшей дискретностью. В показанном на рис. 4, а варианте расположения использован один изотоп, испускающий два пучка лучей. Расположенные на пути прохождения лучей счетчики ра­диоактивного излучения соединены параллельно. Как видно из графика,

Рис.4.  Наиболее распространенные варианта   расположения   излучателей

превышение пределов hmax и hmin вызывает резкое из­менение частоты повторения импульсов, которое можно исполь­зовать для включения реле. Почти непрерывная индикация уровня достигается путем размещения друг над другом нескольких из­лучателей, как показано на рис. 10, г. В этом случае представ­ляется возможным измерять уровень до высоты, равной утроен­ному диаметру резервуара.

На диаграмме показано, что индикация носит приблизительно непрерывный характер. Бесступенчатой графической характе­ристики можно достичь, если применить стержневидный пре­парат проф. Бергольда. Ввиду того что мощность препарата на концах стержня усилена, превышение минимального и максималь­ного уровня заполнения (рис. 10, г) выявляется особенно

четко. Целесообразно в этом случае применять реле. При помощи такого метода можно производить измерение высоты до 3 м. Вариант непрерывного измерения показан на рис. 10, б, Здесь счетчики радиоактивных излучений устанавливают верти­кально. Благодаря расположению в ряд параллельно включенных счетчиков диапазон измерения можно увеличить приблизительно до 1,2 м. Другим решением, также пригодным для измерения вы­соких уровней, является метод измерения со следящим управ­лением (рис. 10, д),

Выводы

Измерение уровня при помощи радиоактивных изотопов обла­дает тем преимуществом, что этот метод является бесконтактным. Посредством этого метода можно измерять уровень заполнения резервуара даже в исключительно сложных условиях. Таким образом, обеспечивается высокая эксплуатационная надежность установки, ее износ и ремонтные работы невелики, что приводит к снижению расходов. Точность измерения около 2 %. При не­прерывных измерениях следует принимать во внимание период полураспада используемого радиоактивного изотопа.

При использовании аппаратуры для контроля уровня металла в квадратных кристаллизаторах источник и приемник излучения размещаются стационарно вне кристаллизатора. На мощных слябовых МНЛЗ источник и приемник размещаются непо­средственно в стенке кристаллизатора в специальных приливах. С помощью термо­стойкого кабеля приемник излучения через соединительную коробку соединен с из­мерительным прибором типа В 3118, который является интегрирующим накопителем импульсов с последующим преобразованием сигнала интегратора в унифицированный сигнал 0-10 В и 0-5 мА. Прибор рассчитан на работу с потоком импульсов 450-9000 имп/с, интегратор позволяет накапливать их с постоянной времени.

Измерение уровня металла в крис­таллизаторе посредством измерительного устройства,  работающего на основе радиоактивности

В большинстве случаев фактический уровень металла в крис­таллизаторе определяют посредством измерительного устройства,  работающего на основе радиоактивности. Другие измерительные устрой­ства, например, термоэлементы, устанавливаемые в стенке кристал­лизатора,  не нашли широкого применения из-за присущих им недостат­ков.[2]

Радиоактивное измерительное устройство состоит из стержневидного препарата кобальта 60, сцинтилляционного счетчика и специального усилителя. Источники радиоактивного излучения и счет­чики размещают на кристаллизаторе таким образом, чтобы через учас­ток, на котором в процессе разливки стали должен установиться ее уровень, могли проходить и улавливаться счетчиком радиоактивные изотопы, поступающие от источника их излучения (рис.5).

Рис.5. Система непрерывного измерения уровня металла в крис­таллизаторе и принцип "шлакового барьера":

1 - промежуточный ковш; 2 - стопор; 3 - наивысший уровень стали; 4 - минимальный уровень стали в кристаллизаторе; 5 - участок из­мерения; б - источник радиоактивного излучения - кобальт 60; 7 - сцинтилляционный счетчик; 8 - стержне видный источник радио­активного излучения (кобальт 60) для непрерывного измерения уров­ня металла в кристаллизаторе; 9 - точечный источник радиоактив­но излучения  (кобальт 60) для измерения предельных величин (здесь "шлаковый барьер");  10 - кристаллизатор для литья слябов; (вид сверху);   S- подъем кристаллизатора;  U- напряжение

Толщина и плотность просвечиваемого материала определяют степень поглощения радиоактивного излучения и, следовательно, число изотопов, улавливаемых счетчиком. При повышении или пони­жении уровня стали на участке измерения его высоты в кристаллизаторе происходит большее или меньшее перекрытие радиоактивного из­лучения и вместе с тем изменение числа гамма-квантов, улавливае­мых счетчиком. Следовательно, количество попадающих на счетчик гамма-квантов служит мерой высоты уровня жидкой стали в кристал­лизаторе.

Гамма-кванты, достигающие счетчика,  вызывают световые вспышки во вмонтированном кристалле йодистого натрия, частота которых пропорциональна интенсивности проходящего радиоактивного излучения. Вместе с кристаллом находится оптически подрегулированный фотоэлектронный умножитель, в светочувствительной части которого световые вспышки вызывают образование вторичных элект­ронов. Затем в результате работы специальных умножителей, усилителей и преобразователей полного сопротивления получаются соот­ветствующие импульса.

Эти импульсы, стандартизованные, прообразованные и усилен­ные в счетчике, по специальному кабелю передаются в главней уси­литель, которой преобразует их в постоянное напряжение или силу тока, пропорциональные высоте уровня металла в кристаллизаторе.

Так как каждый радиоактивный процесс подвержен статическим колебаниям,  полученную таким образом измеренную величину нельзя использовать без дальнейшей, обработки. Эту обработку выполняют  специальные фильтры.

При проектировании таких измерительных устройств необходи­мо учитывать два противоположных требования.

Мощность источника излучения при порожнем кристаллизаторе должна обеспечивать около 4000-6000 импульсов в секунду,  так как при этом наблюдаются меньшие статические колебания.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.