RSS    

   Реферат: АСУ двухстадийного дробления замкнутого цикла

S2 = 1,

S1 = 1.6453,

S0 =0.0211.

Рис. 5.3.  Переходный процесс системы с ПИД – регулятором.

          Из переходных процессов видно, что наиболее оптимальным является ПИД – регулятор, т. к. у него меньше перерегулирование и меньше время переходного процесса.

6. Подключение датчиков к контроллеру

Устройство управления для данной системы реализуем на базе контроллера ROBO 3140, на который в этом случае возлагаются функции сбора информации о текущей производительности подсистем дозирования, обработки полученной информации и выдачи управляющих сигналов на исполнительные механизмы. Характеристики контроллера приведены в таблице 1.

Таблица 1. ROBO 3140

Конструкция Пластиковый корпус
Вид монтажа Монтаж на DIN рейку; Монтаж на стене
Процессор
Тип процессора AMD188ES
Максимальная частота процессора 40МГц
Память
Оперативная память Максимальный объем 256кб
Установлено 256кб
Энергонезависимая память Максимальный объем 2кб
Установлено 2
Тип EEPROM
Электронный диск Установлено 512кб
Максимальный объем 512кб
Тип Flash
Интерфейс
Последовательный интерфейс Тип 2xRS232; RS485; RS232/RS485
Максимальная скорость 115200бит/сек
Разъемы DB9; Винтовые клеммы
Таймеры
Часы реального времени Да
Сторожевой таймер 1.6сек


Разъемы
Разъемы Питания Винтовые клеммы
Другие DB9 Винтовые клеммы
Управление и индикация
Индикаторы Светодиоды
Питание
Напряжение питания +10...+30В
Потребляемая мощность 3Вт
Программное обеспечение
Программное обеспечение Операционная система DOS
Системное Библиотека программирования
Инструментальная система GoodHelp
Условия эксплуатации
Условия эксплуатации Температура -20..+75°С
Размеры и вес
Размеры Ширина 72мм
Высота 122мм
Глубина 25мм
Вес 0.2кг

Для ввода информации в контроллер, учитывая, что выходной сигнал с датчиков производительности подсистем дозирования является аналоговым и изменяется в пределах 0..5 мА, выбираем модуль I-7012 (по одному на каждый контур дозирования), характеристики которого представлены в таблице 2.  В этом случае подключение осуществляется через внешний резистор 125 Ом.

Таблица 2. Модуль I-7012

Конструкция Модуль с последовательным интерфейсом; Монтаж на DIN рейку; Пластиковый корпус
Интерфейс
Интерфейс Тип RS-485
Скорость передачи данных 1200бит/сек; 2400бит/сек; 4800бит/сек; 9600бит/сек; 19200бит/сек; 38400бит/сек; 57600бит/сек; 115200бит/сек

Максимальная длина линии связи

1200м (Сегмент)
Протокол передачи данных Совместим с протоколом ADAM-4000
Макс. количество модулей в сети 2048
Аналоговый ввод
Каналов аналогового ввода Всего 1
Дифференциальных 1
Диапазоны входного сигнала Биполярного, по напряжению -0.15..+0.15В; -0.5..+0.5В; -1..+1В; -5..+5В; -10..+10В
Биполярного, по току -20..+20мА
Входное сопротивление При измерении напряжения 20МОм
При измерении тока 150Ом (Внешний резистор)
Вход Токовый шунт Внешний; 150 Ом
Перегрузка по входу 35В
Полоса пропускания 5.24Гц
АЦП Разрядность 24бит
Частота выборки 10выборок/сек
Тип преобразования Сигма-дельта преобразование
Режимы запуска Встроенный генератор
Гальваническая изоляция 3000В
Погрешность -0.05..+0.05%
Коэффициент подавления помехи общего вида 86дБ (50/60Гц)
Коэффициент подавления помехи нормального вида 100дБ (50/60Гц)
Температурный дрейф нуля 20мкВ/°C
Дискретный ввод
Каналов дискретного ввода Всего 1
Без изоляции 1
Входное напряжение Логический 0 0..+1В
Логическая 1 +3.5..+30В
Дискретный вывод

Каналов дискретного вывода

Всего 2
Открытый коллектор, без изоляции 2
Коммутируемый ток Постоянный 30мА
Коммутируемое напряжение Постоянное 30В
Рассеиваемая мощность 300мВт
Таймеры/счетчики
Таймеры/счетчики Всего 1 (Счетчик событий)
Входная частота Измерение частоты 0..50Гц
Процессор
Встроенный процессор Совместим с 8051
Сторожевой таймер
Сторожевой таймер Да
Разъемы
Разъемы Винтовые клеммы
Питание
Напряжение питания +10...+30В
Потребляемая мощность 1.3Вт
Условия эксплуатации
Условия эксплуатации Температура -20..+75°С
Размеры, вес
Размеры Длина 122мм
Ширина 72мм
Высота 25мм

В качестве исполнительного механизма в данном случае используются АД, управление которым осуществляется посредством АИН который в свою очередь управляется ШИМ через специальную микросхему драйвер IR2235S. В соответствии с этим выбран модуль I-7066, характеристики которого приведены в таблице 3.

Таблица 3. Модуль I-7066

Интерфейс
Интерфейс Тип RS-485
Скорость передачи данных

1200бит/сек; 2400бит/сек; 4800бит/сек; 9600бит/сек; 19200бит/сек; 38400бит/сек; 57600бит/сек; 115200бит/сек

Максимальная длина линии связи 1200м (Сегмент)
Протокол передачи данных Совместим с протоколом ADAM-4000
Макс. количество модулей в сети 2048
Дискретный вывод
Каналов дискретного вывода Всего 7
Твердотельное реле (SSD) 7
Гальваническая изоляция 5000В
Реле Максимальный коммутируемый ток, постоянный 0.13А@350В
Максимальный коммутируемый ток, переменный 0.13А@350В
Время включения 0.7мс
Время выключения 0.05мс
Процессор
Встроенный процессор Совместим с 8051
Сторожевой таймер
Сторожевой таймер Да
Разъемы
Разъемы Винтовые клеммы
Питание
Напряжение питания +10...+30В
Потребляемая мощность 0.5Вт
Условия эксплуатации
Условия эксплуатации Температура -20..+75°С
Размеры, вес
Размеры Длина 122мм
Ширина 72мм
Высота 25мм

Таким образом, функциональная схема устройства управления будет иметь вид, представленный на рис. 6.1.

Рис. 6.1.  Функциональная схема устройства управления.

Электрическая схема подключения датчика ВК-2М к модулю I-7012 представлена на рис. 6.2.

Рис. 6.2.  Схема подключения датчика производительности к модулю I-7012.

Электрическая схема подключения привода питателя  к модулю I-7066 представлена на рис. 6.3

Рис. 6.3.   Схема подключения модуля I-7066 к АД.


7.  Реализация САР в GOOD HELP

Устройство управления системой реализуем на базе контроллера ROBO 3140 с помощью системы графического программирования контроллеров Good Help, которая представляет собой поддержку языка функциональных блоковых диаграмм – FBD (Function Block Diagrams).

Графический язык диаграмм функциональных блоков  (далее FBD) позволяет технологу строить сложные схемы на основе существующих функций библиотеки системы Good Help, связанных в диаграмму.

         Диаграмма FBD описывает функцию, определяющую взаимодействие между входами и выходами блоков, имеющихся в библиотеке.

  Элементарный блок выполняет одну функцию взаимодействия между своими входами и выходами. Схема разрабатывается путем размещения функциональных блоков на различных вкладках поля редактирования, которые позволяют создавать логическое разбиение контуров редактирования по группам.

Для реализации полученного оптимального закона регулирования необходимо в редакторе схем (edchart) с помощью стандартных блоков набрать соответствующую программу.

Программа регулирования производительности щековой дробилки

        Для проверки системы отображения информации на пульте оператора можно создать тестовую схему, описывающую математическую модель объекта управления.

Программа регулирования производительности щековой дробилки в тестовом режиме.

Регулируемые параметры, а также параметры, несущие важную информацию о ходе технологического процесса, необходимо занести в таблицу внешнего доступа, чтобы они были доступны оператору.

В данном случае таблица внешнего доступа имеет вид:

Для удобного контроля и управления технологическим процессом воспользуемся редактором отображения информации (wstation). Он предназначен для представления данных, полученных от технологических контроллеров, на графических  мнемосхемах. 

В окне редактирования на поверхности статической мнемосхемы (иначе ее можно назвать подложка или фон) производится расстановка форм отображения информации  и привязка к этим формам параметров, получаемых от контроллеров.

В данном случае нам необходимо обеспечить отображение производительности дробилки, а также заданную производительность дробилки с возможностью ее изменения.

Окно регулирования загрузки мельницы (рис. 7.1) содержит в качестве подложки функциональную схему процесса, а также две формы типа динамический текст для отображения производительности. Эти формы предназначены для отображения и ввода информации. Это свойство можно использовать для обеспечения возможности оператору задавать требуемую производительность мельницы.

Рис.7.1. Окно регулирования производительности дробилки.

 

Окно переходных процессов (рис. 7.2) носит вспомогательный характер и отражает динамику процесса регулирования производительности дробилки.

Рис. 7.2. Окно переходных процессов.

 


Заключение

В данном курсовом проекте была произведена автоматизация щековой дробилки, для которой производительность на выходе зависит от производительности питателя. Для того чтобы система обладала быстродействием и не была при этом  расходящаяся, был выбран и рассчитан регулятор. Наилучшими свойствами указанными выше при расчете регулятора обладает ПИД-регулятор.

Данную систему реализовали в GOOD HELP для реального объекта с использование модулей I -7000, ROBO-3140 и стандартных компонент. А также создали тестовый вариант программы для наглядной демонстрации.


Список литературы

1.   Зеличенок Г. Г.   Автоматизация технологических процессов на предприятии строительной индустрии – М.: “ Машиностроение ”1974г.

2.   Проектирование цементных заводов. Под редакцией Зозулина П.В., Никифорова Ю. В. – М.: “Машиностроение”, 1995г.

3.  Банит Ф. Г., Несвижский О.А. Механическое оборудование цементных заводов – М.: “ Машиностроение ”,1975г.

4.  www.icp2u.ru

5.  www.metran.ru  

6.   http://upk.ural.ru/index/ru/products/17


Страницы: 1, 2, 3, 4, 5


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.