RSS    

   Реферат: Кариотип человека

Наиболее ценную информацию о тонкой структуре функционирующих хромосом принесло исследование политенных хромосом, которые являются специфической, но естественной моделью хромосом интерфазного ядра в клетках двукрылых, и хромосом типа «ламповых щеток», обнаруживающихся в ооцитах амфибий в мейотической профазе I. Большие размеры этих хромосом позволили провести тщательное их изучение под световым микро­скопом. В результате этих исследований сформулирова­ны положения, которые рассматриваются как принципи­альные для организации хромосом эукариотов в целом (И. И. Кикнадзе, 1972).

В интерфазном ядре хромосомные районы, соответст­вующие эухроматину, имеют хромомерное строение. Каждая хромомера является структурной и функциональ­ной единицей хромосомы как продольно дифференциро­ванной органеллы. Дифференциальная транскрипция этих единиц структурно обеспечивается деконденсацией упако­ванного в ней дезоксирибонуклеопротеида, что выражается в форме пуфов в политенных хромосомах, или петель в хромосомах типа «ламповых щеток».

Методом исследования тонкой структуры интерфазных ядер, не обладающих политенными хромосомами, а также метафазных хромосом является электронная микроскопия (Ю. С. Ченцов, В. Ю. Поляков, 1974). К сожалению, на ос­новании результатов, полученных этим методом, пока не удалось составить цельного представления об ультраструк­туре интерфазного ядра. На электронограммах ультратон­ких срезов основная обнаруживаемая морфологическая единица — это нить в разных сечениях диаметром 10 нм и меньше. На препаратах хроматина, распластываемого на поверхности водного мениска, обнаруживаются протяжен­ные нити около 23—25 нм в диаметре.

Несмотря на многочисленные исследования митотических или мейотических хромосом, данные по их ультра­структуре, которые позволили бы создать непротиворечи­вую модель упаковки элементарной хромосомной нити во время клеточного деления, остаются скудными. Наиболь­шая информация получена по ультраструктуре специали­зированных районов хромосом: центромерного района, ядрышка, синаптонемального комплекса в мейотическпх хромосомах. Данные электронной микроскопии целых изо­лированных хромосом использованы для их идентифика­ции, при этом специальное внимание уделено метафазным хромосомам человека (Bahr, Larsen, 1974). Этот метод по­зволил обнаружить неравномерную плотность упаковки элементарных хромосомных нитей по длине хромосом, и рисунок этой неравномерности оказался совпадающим с линейной дифференцированностыо структуры хромосомы, выявляемой под световым микроскопом. Элементарные фибриллы на электронограммах целых распластанных хро­мосом имеют размер порядка 25—30 нм. Биохимическое исследование таких фибрилл и соответствующие расчеты дают основание заключить, что молекулы нуклеопротеидов находятся в них в сверхскрученном состоянии и что, кро­ме гистонов, фибриллы содержат другие белки.

Достаточно полное освещение вопросов молекулярной генетики и хромосомной организации в многочисленных специальных монографиях и руководствах (С. Е. Бреслер, 1973; И. П. Ашмарин, 1974; Г. Стент, 1974, и др.) исклю­чают необходимость подробного рассмотрения этих вопро­сов в данной книге. Сравнительно новый молекуляр­ный аспект хромосомной организации воз­ник в связи с разработкой методов фракционирования тотальной ДНК генома по повторяемости сходных нуклеотидных последовательностей и методов гибридизации ну­клеиновых кислот на хромосомных препаратах. Эти ме­тоды открыли возможность выяснения локализации раз­ных фракций ДНК в хромосомном наборе. Важными находками, полученными в этой новой области, погранич­ной между молекулярной и цитологической генетикой, бы­ли: а) обнаружение в геноме эукариотов, помимо ДНК с уникальными последовательностями, большой доли ДНК с одинаковыми или близкими последовательностями нуклеотидов, повторяющимися многие сотни и тысячи раз (Г. П. Георгиев, 1973; С. А. Лимборская, 1975); б) обнару­жение неравномерной локализации ДНК с разными харак­теристиками в хромосомном наборе: ДНК с наибольшим числом повторяющихся последовательностей локализуется в гетерохроматиновых районах хромосом.

К настоящему времени фракционирование ДНК и опре­деление хромосомной локализации фракций проведено на многих видах организмов. Каждый вид характеризуется своей специфической структурой генома в отношении со­става ДНК и спецификой их распределения по хромосо­мам набора. Многие работы этого направления выполнены на клетках человека. Полученные в них результаты по­дытожены А. Ф. Захаровым (1977) и Jones (1973).

ДНК генома человека может быть фракционирована на ДНК с уникальными копиями (около 64%) и ДНК с пов­торяющимися последовательностями. По скорости ренатурации, которая отражает повторяемость нуклеотидных по­следовательностей, последняя фракция может быть под­разделена на ДНК с малой (13,4%), промежуточной (12,3%) и высокой (10,3%) скоростью ренатурации моле­кул ДНК. Таким образом, в геноме человека около 10% всей ДНК имеет высокую многократность повторения оди­наковых последовательностей.

Методом  градиентного ультрацентрифугирования в группе ДНК с высокой повторяемостью последовательно­стей выделены по крайней мере четыре типа так называе­мых сателлитных ДНК. Помимо этих видов ДНК, в экс­периментах с гибридизацией ДНК — РНК исследована хромосомная локализация ДНК, кодирующая синтез 5S, 18S и 28S рибосомных РНК. В настоящее время распре­деление разных типов ДНК в хромосомах человека выри­совывается следующим образом.

ДНК с низкой и промежуточной повторяемостью нуклеотидных копий обнаруживается во всех хромосомах, причем она локализуется по всей длине их плеч.

ДНК с высокой повторяемостью нуклеотидных копий обнаруживается преимущественно в околоцентромерных и отчасти теломерных районах. Сателлитные индивидуаль­ные ДНК распределены в разных хромосомах неравномер­но. Так, сателлитной ДНК I и IV особенно богата Y-xpoмосома, в хромосомах 1 и 16 больше всего содержится сателлитной ДНК II, а в хромосоме 9 — III. Рибосомная ДНК 18S и 28S заключена почти исключительно в корот­ких плечах всех 10 акроцентрических хромосом. Дистальная часть длинного плеча аутосомы 1 — преимущественное место для пистронов, кодирующих 5S РНК. Не исключена возможность, что методом гибридизации ДНК с РНК in situ удастся картировать не только полигенные ло-кусы, но также структурные гены, повторяющиеся малое число раз (Rotterdam. Conference, 1974).

Две важнейшие черты генетической организации эукариотов - дифференциальная активность структурных ге­нов и большая доля генов, регулирующих этот процесс,— должны иметь основой соответствующую структурную ор­ганизацию хромосомы. Десятилетия упорного труда цитогенетиков значительно приблизили нас сегодня к понима­нию того, как в хромосоме взаимодействуют структура и функция, как хромосома осуществляет свою сложную роль интеграции системы генов.

Первая фундаментальная черта структурно-функцио­нальной организации хромосомы состоит в существовании двух разных функциональных типов хромосомного мате­риала — эухроматина и гетерохроматина. Их основное раз­личие заключается в транскрипционной активности.

Отсутствие генетической активности у гетерохроматина обусловлено либо его бедностью структурными генами (структурный гетерохроматин), либо временным выклю­чением участка хромосомы, несущего такие гены, из гене­тической транскрипции (факультативный гетерохроматин, гетерохроматинизация).

Второй важнейшей чертой хромосомной организации яв­ляется линейная расчлененность хромосомы па участки, состоящие из хроматина разного типа. Каждая хромосо­ма отличается своим уникальным порядком расположения гетеро- и эухроматиновых районов.

Подразделенность хроматина по генетическому значе­нию хорошо коррелирует с различием типов хроматина и по ряду других характеристик: состоянию конденсации в интерфазном ядре и хронологии конденсации в митотическом и мейотическом цикле; времени репликации ДНК;

отношению к окраске флуорохромами или нефлуоресци­рующими красителями; чувствительности к повреждающе­му действию химических мутагенов; химическим особен­ностям ДНК и, по-видимому, белков, входящих в состав хроматина; фенотипическим проявлениям хромосомных перестроек. Для гетерохроматина характерны конденсиро­ванное состояние в интерфазном ядре, опережающая кон­денсация в профазе митоза и мейоза, возможность отста­вать в конденсации спонтанно или под влиянием некото­рых воздействий в метафазе митоза. По сравнению с эухроматином гетерохроматиновые районы хромосом ре­продуцируются в более поздние отрезки S-периода. При дифференциальной окраске по G- и С-методике гетерохро­матиновые сегменты сохраняют способность к окрашива­нию (G-сегменты) и даже усиленно красятся (С-сегменты). В цитогенетике хорошо известна неравномерность распределения по длине хромосомы ее структурных по­вреждений, индуцируемых мутагенными веществами: по­вышенной повреждаемостью отличаются именно гетеро­хроматиновые районы. ДНК с неоднократно повторяющи­мися нуклеотидными последовательностями характерна именно для гетерохроматина. В отличие от эухроматина, содержащего уникальные гены, дисбаланс по которым от­рицательно отражается на фенотипе организма, изменения в количестве гетерохроматина не влияют или значительно меньше влияют на развитие признаков организма.

Взаимосвязанность различных структурных и функцио­нальных характеристик хромосомы — третья фундамен­тальная черта хромосомной организации. Вопрос о причин­но-следственных связях в отмеченном корреляционном комплексе активно исследуется. Ответ должен быть полу­чен, в частности, на вопрос о том, сводимо ли все разнообра­зие свойств разных видов хроматина к различиям в химиче­ских особенностях хромосомной ДНК. Однако независимо от прогресса в понимании этих корреляций их феномено­логия служит главным инструментом к познанию струк­турно-функциональной расчлененности каждой конкрет­ной хромосомы человека. В продольной дифференцирован­ности индвидуальных хромосом по плотности конденсации, по окрашиваемости теми или иными красителями, по осо­бенностям составляющей их ДНК и другим характери­стикам заложены не формальные признаки идентифика­ции хромосом или их участков, а признаки, имеющие ге­нетический смысл. Эта новая область цитогенетики чело­века активно развивается, и в сочетании с успехами в картировании хромосом поднимет цитогенетику человека на еще более высокий уровень. Из уже имеющихся по этой проблеме сведений интерес для генетики представля­ют следующие.

Страницы: 1, 2, 3, 4, 5, 6, 7


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.