RSS    

   Шпаргалка: Теория электрической связи

n

0 1 2 3 4 5 6

Jn(β)

-0,18 -0,33 0,047 0,37 0,39 0,26 0,13

Для частотно-модулированного колебания индекс модуляции находят как . Значения Jn(β) для β=10 приведены в табл. 5.2.

Таблица 5.2.

n 0 1 2 3 4 5 6 7 8 9 10 11

Jn(β)

-0,25 0,044 0,26 0,06 -0,22 -0,23 -0,014 0,22 0,32 0,29 0,21 0,12

Методические указания к решению задачи 9

            Любой корректирующий код содержит n элементов, которых m информационных и к проверочных. Тогда n=m. Длину кодовой комбинации n кода Хэмминга. При заданном числе информационных элементов m можно определить из неравенства

Покажем принцип построения кодовой комбинации кода Хэмминга, если шифр студента 01-МТС-7.

Учитывая, что в шифре содержится только одна цифра 7 к ней необходимо добавить цифры 1 и 0 тогда цифра получится 107. В двоичной системе счисления путем последовательного деления числа 107 на 2:

      (1101011). Следовательно, исходная кодовая комбинация будет иметь семь элементов (m=7)

Определим число проверочных элементов из неравенства

Отсюда n=11, к=4. Следовательно, кодовая комбинация будет содержать 11 элементов из которых 7 информационных и 4 проверочных.

Определим позиции проверочных элементов в кодовой комбинации. Для этого запишем номера позиций кодовой комбинации в двоичной системе счисления – табл. 5.3.

передачи частотно-импульсной модуляцией (ЧИМ), широтно-импульсной мо Здесь через  обозначена функция sin c(x)=sin(x)/x

Фазо-частотная характеристика (ФЧХ)

θ(ω)=πn  где n=0,1,2…

или φ(f)=θ(f)=-πn, n∙103 ≤f<(n+1) 103

Эффективная ширина спектра импульса

При расчете спектральной плотности пачек видеоимпульсов спектральную плотность первого импульса в пачке обозначают S1(ω), тогда для второго импульса, сдвинутого относительно первого на период Т (в сторону запаздывания), S2(ω)= S1(ω)l-iωT, для третьего S3(ω)= S1(ω)l-i2ωT.

Для группы из N импульсов

SN(ω)= S1(ω)[1+l-iωT+ l-i2ωT+…+ l-i(N-1)ωT]

На частотах, отвечающих условию , где K – целое число,  т.е. модуль пачки в N раз больше модуля спектра одиночного импульса. Это объясняется тем, что спектральные составляющие различных импульсов с частотами  складываются с фазовыми сдвигами, кратными 2π. При частотах . Сумма векторов l-iкT обращается в ноль, и суммарная спектральная плотность равна нулю.

При промежуточных значениях частот модуль S(ω) определяется как геометрическая сумма спектральных плотностей отдельных импульсов.

Методические указания к решению задачи 8

            Практическая ширина спектра частот при фазовой и частотной модуляции определяется числом N гармонических составляющих, равным N=2(β+1)+1

            Амплитуда каждой составляющей спектра определяется как

Un=U∙Jn(β)

Где Jn(β) – функция Бесселя, значения которой даны в табл. 11 для β=5

Содержание дисциплины

Вводная

Роль передачи сигналов в народном хозяйстве передача сообщений на расстояние, физический процесс несущий сообщение, источник сообщения, информация классификация информации.

Общие сведения о системах электросвязи.

Обобщенная схема системы передачи информации электрическими сигналами и ее элементами. Показатели качества систем передачи, помехи, вероятность ошибки.

Количество информация. Энтропия. Пропускная способность. Производительность. Избыточность.

Основные характеристики систем электросвязи

Сообщения, сигналы, помехи их математические модели. Детерминированные сигналы и их характеристики, частотное и временное представление, энергия, мощность, корреляционные характеристики. Сигналы и помехи как случайные процессы, их классификация и характеристики: вероятностные, спектральные, корреляционные. Стационарность и эргодичность случайного процесса. Гауссовский случайный процесс. Марковские непрерывные и дискретные процессы, способ их представления.

Формы и способы преобразования сигналов и кодирования.

Разложение сигналов в обобщенный ряд Фурье по системам ортогональных функций. Теорема Котельникова. Интерполяционная погрешность, определение частоты дискретизации. Разностные и дельта-дискретные представления. Адаптивная дискретизация.

Понятие о кодировании сигналов. Эффективное кодирование. Первичные коды. Способы кодирования и кодирующие, декодирующие устройства.

Методы формирования и преобразования сигналов.

Принципы образования спектров сигнала. Преобразования частот. Модуляция сигналов. Модуляция как управление информационным параметром сигнала-переносчика, как преобразование сигнала в параметрической цепи.

Аналоговые непрерывные виды модуляции гармонического колебания (АМ, ЧМ, ФМ, ВМ, ОМ), их характеристики, принципы построения модуляторов и демодуляторов. Дискретные сигналы (АТ, ЧТ, ФТ, ОФТ) и их характеристики.

Цифровые виды модуляции (ИКМ, ДИКМ, ДМ), их характеристики, принципы построения АЦП и ЦАП.

Каналы электросвязи и способы передачи сигналов по ним.

Каналы электросвязи. Классификация каналов электросвязи. Математическое описание каналов электросвязи. Способы передачи сигналов по каналам электросвязи. Помехи в каналах связи. Передача сигналов по каналам связи способом амплитудно-импульсной модуляции (АИМ). Помехо-защищенность сигналов при АИМ. Способы

дуляцией (ШИМ), фазоимпульсной модуляцией (ФИМ) и относительно фазовой модуляцией (ОФМ).

Методы повышения верности передачи сигналов. Помехоустойчивые коды.

Классификация способов повышения верности сигналов передаваемых по каналам связи. Многократное повторение сообщений. Использование каналов обратной связи. Структурные схемы систем повышения верности искажения сигналов и их закономерность.

Применение помехоустойчивых кодов, их назначение, особенности и классификация. Блочные систематические коды, их математическое представление. Алгоритмы кодирования и декодирования линейных кодов. Кодирующие и декодирующие устройства блочных линейных кодов.

Циклические коды, их свойства и математическое представление. Алгоритмы кодирования и декодирования. Кодирующие и декодирующие устройства циклических кодов. Декодирование с обнаружением и исправлением ошибок различной кратности. Мажоритарное декодирование. Сверхточные коды, их свойства. Кодирующие и декодирующие устройства сверхточных кодов. Выбор кодов в соответствии со статистикой ошибок в каналах. Помехоустойчивость различных кодов. Примеры использования и перспективы применения помехоустойчивого кодирования в устройствах систем электросвязи.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.