Реферат: Тригонометричні ефемериди планет Сонячної системи
Реферат: Тригонометричні ефемериди планет Сонячної системи
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ
ТЕРНОПІЛЬСЬКИЙ
ДЕРЖАВНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ
імені Івана
Пулюя
КУРСОВА РОБОТА
з об’єктно -
орієнтованого програмування на тему:
“Тригонометричні ефемериди планет
Сонячної системи”
Зміст
стор.
Вступ. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _5
1.Теоретична частина._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 6
2.Розробка алгоритму і структури програми._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 16
3.Програма на мові програмування Delphi._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 19
4.Тестування програми і результати її виконання. _ _ _ _ _ _ _ _ _ _ _ _ _ _ 45
5.Висновки. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 46
6.Список літератури. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 47
Вступ
З давніх часів люди захоплено дивилися в нічне зоряне небо. Ще нічого не знаючи про будову Всесвіту , вони з ночі в ніч вели спостереження за зорями і Місяцем. Особливо їх зацікавив небесний рух 5 яскравих зірок, які на відміну від інших міняли своє положення і отримали за це назву – планети (aster planetes – (лат.) блукаюча зоря).
Спостерігачі древніх цивілізацій намагалися розгадати
закони руху цих
зірок по небу. Древній грек Птоломей описав їх рух, виходячи із своєї гео-
центричної системи світу. Корінний перелом у вивченні небесної механіки
наступив в середньовіччі, коли Копернік поставив у центр світу Сонце, Кеп-
лер на основі спостережень сформулював закони руху планет по своїх орбі-
тах, а Ньютон вивів закон всесвітнього тяжіння. З тих пір астрономи почали
детально порівнювати результати спостережень із результатами обчислень.
Розвиток оптичних приладів і математичного апарату обчислень дав поштовх
до того, що результати набули високої точності. Ті незначні невідповідності
в обчисленнях заставили астрономів задуматись над їх причинами, що дало
змогу відкрити нерівномірності в русі планет, так наприклад зміщення пери-
гелію Меркурія було пояснено лише з приходом теорії відносності.
Людина завжди прагнула побачити своє майбутнє,
астрономам вдалося зазирнути у майбутнє планет. Знаючи їх початкове положення
і те, як вони ру-
хаються, вчені можуть прогнозувати їх місцезнаходження на століття вперед.
Однак вирішення цієї задачі складне, оскільки потрібно враховувати дуже ба-
гато чинників : вплив Сонця , вплив планет одна на одну, зміна елементів їх
орбіт з плином часу. До появи ЕОМ ці завдання вирішувались на папері мак-
симум з логарифмічною лінійкою , що займало місяці тяжкої праці. Навіть
незначна помилка, особливо на початку роботи, зводила всю її нанівець. Тепер
же, астрономи, за допомогою потужних ЕОМ можуть за лічені секунди обраху-
вати траєкторії руху планет, комет, астероїдів.
1. Теоретична частина
Планети Сонячної системи – це небесні тіла, які рухаються в полі
тяжіння Сонця по еліптичних орбітах і світяться відбитим сонячним промінням.
Основна відмінність планет від зірок у тому, що температури всередині планет
недостатні для перебігу там термоядерних реакцій, що в свою чергу зумовлене їх
малою масою.Крім великих планет до складу Сонячної системи входять малі планети
– астероїди. Великі планети за їх фізичними характеристиками поділяють на дві
групи: планети земної групи – Меркурій, Венера, Земля, Марс, та планети-гіганти
– Юпітер, Сатурн, Уран, Нептун. Плутон швидше належить до малих планет. Ос-
новна відмінність між цими групами в тому, що до складу планет першої групи
входять в основному важкі хімічні елементи тоді як планети-гіганти складаються
переважно з водню і гелію.
Отже уявімо, що проста людина, озброївшись підзорною трубою чи навіть біноклем, захоче подивитися на ці планети. Перше питання, яке в неї виникне – це куда, в яку точку неба направити свій погляд, адже без спеціальних знань зоряних атласів виокремити планети на фоні тисячі зірок неможливо. Для любителів астрономії і професіоналів астрономів важливо буде знати точні координати планети, відстань до неї, кутовий діаметр, фазу диска, видиму зоряну величину – тобто знати астрономічні ефемериди планети .
В даній курсовій роботі складена програма на мові Delphi, яка використовуючи закони тригонометрії приблизно обчислює ефемериди планет і дозволяє наочно зобразити планети на фоні зоряного неба. Слово “приблизно” означає, що існує деяка похибка, пов’язана з слабким математичним апаратом обчислення, і ця похибка для професіоналів була б просто катастрофічною. Адже сучасні теорії руху планет з використанням диференціального і інтегрального обчислення, а також сучасні обчислювальні машини дозволяють нівелювати похибку обчислення до похибки роздільної здатності сучасних телескопів. Але хочу звернути увагу, що кінцевими користувачами програми можуть бути прості люди і любителі астрономії, для яких ця похибка не дуже важлива.
Отже, що таке ефемериди? Ефемериди – це астрономічні дані про положення на небі та умови спостереження світил для окремих або послідовних моментів часу. Ефемериди публікують у спеціальних виданнях. Астрономічні ефемериди містять головним чином дані про координати, відстані, фази планет.
Архімед сказав : “Дайте мені точку опори і я переверну Землю”. Для астрономії точкою опори, здатною перевернути усю Сонячну систему, є час, а точніше початкова точка відліку часу.
У програмі точкою відліку часу є 9 січня 1990р. Чим особлива ця дата? А
ні чим, просто у автора програми під рукою був лише “Астрономічний календар на
1990р. “ і він з нього дізнався про точні координати планет Сонячної системи
саме на цю дату. Другою проблемою, яку слід вирішити – є система відліку часу.
Те, що творилося з нашим календарем в історії для астрономів інакше як жахом
не назвеш. То спочатку був Юліанський календар потім Григоріанський, під час
переходу було втрачено 13 днів, як наслідок ми св’яткуємо старий Новий рік. Ви-
сокосні роки, 29 лютого, декретний час – все це призводить до плутанини.
В астрономії прийнято нумерувати дні. Нумеровані дні в астрономії мають назву юліанські дні. Якщо дні нумеровані, то спрощуються всі календарні розрахунки. Наприклад, число днів між двома датами рівне різниці відповідних номерів дат. Це визначення і покладено в основу системи відліку часу в нашій програмі. Єдина проблема – це розробити метод нумерації днів в рамках нашого Григоріанського календаря.
Нумерація днів в
сучасному календарі затруднена через його неперіодичність : одні місяці мають
30 днів, інші 31, в лютому то 28, то 29 в високосному році. Як-
би в кожному місяці було 30 днів, а високосних років не було, то номер дати
можна було б визначити по формулі:
N=365
* G + 30 * (M-1) + D
де – G, M, D – рік, місяць, день дати.
Найбільші
складності в удосконалені цієї формули створює лютий. Для високосних років,
починаючи з 1 березня , потрібно враховувати додатковий день. Якби лютий був останнім
місяцем року, то по крайній мірі, ця складність зникла б. Тому в календарних
розрахунках місяць і рік доцільно перенумерувати: березень буде першим місяцем
року і т.д., а січень і лютий одинадцятим і дванадцятим місяцями попереднього
року.
Алгоритм присвоєння номера дня в рамках Григоріанського календаря буде
таким:
S:= int ( 12 – M /10 );
M:= 12 * S + M – 2 ;
G:= G – S ;
N:= 365 * G + int (G/4) – int (G/100) + int (G/400) + int (30.59 * M ) + D – 30 ;
спростимо : об’єднаємо перші два члена до int ( 365.25 * G ).
Для дат з 1900 по 2099 роки вираз N спрощується за рахунок того, що сума тре-
тього і четвертого членів за цей час не міняється і дорівнює –15. Так як в
нуме-
рації дат числа –15 і –30 тільки посувають номера всіх дат на одне і теж число,
то в розрахунках їх можна не враховувати. Щоб номера дат для CC і CCI ст. не
були занадто великими з номера року віднімемо 1900, тоді:
N:= int ( 365.25 * ( G – 1900 ) + int (
30.59* M ) + D ; (1)
Оскільки за цією
формулою 9 січня 1990 р. Має значення N:=32852,
то ми вводи-
мо його як константу точки відліку часу.
Тепер розберемося з простором. Просторове положення планети відносно Сонця задається елементами орбіти. Елементи орбіти – величини, які характеризують розміщення орбіти небесного тіла в просторі, її розміри, форму, а також положення тіла на орбіті. За початок відліку координат беруть точку весняного рівнодення - точку небесного екватора, через яку центр диска Сонця 20(21) березня переходить з Південної півкулі неба в Північну.
Якщо дивитися з полюса орбіти, з якого рух тіла відбувається проти руху стрілки годинника, то точку перетину площини орбіти з площиною екліптики ( площина орбіти Землі ), в якій орбіта піднімається над площиною екліптики – називають висхідним вузлом. Дугу від точки весняного рівнодення по великому колі екліптики до вузла – називають довготою висхідного вузла (W, Aie ).
Дугу від точки
весняного рівнодення до точки перигелію планети ( найменша
відстань до Сонця ) – називають довготою перигелію Aap.
Розміри і форму орбіти визначають за рівнянням орбіти в полярних координатах
де:
r – відстань від точки на
орбіті, де знаходиться планета до Сонця в а.о. ) AR ,
e – ексцентриситет орбіти (
геометрична властивість еліпса орбіти) Aeo ,
a – велика піввісь орбіти
(середня відстань від планети до Сонця в а.о. ) Aao ,
v – кут справжньої аномалії (
кут у площині орбіти від перигелію до точки на
орбіті, де перебуває планета),
оскільки v = b - Aap де:
b - геліоцентрична довгота
планети ( кут між точкою весняного рівнодення і точкою на орбіті де перебуває
планета ) AG,
отже:
або
( 2 )
Страницы: 1, 2, 3, 4, 5, 6, 7, 8