RSS    

   Реферат: Схемотехническое и функциональное проектирование вакуумной коммутационной аппаратуры

поверочные расчеты ВКА;  определение выходных параметров структур-

ных элементов ВКА;  формирование критериев оптимальности и ограни-

чений;  оптимизацию параметров ВКА;  анализ оптимальной компоновки

ВКА;  корректировку  принятого решения в подсистеме ССВКА или кор-

ректировку ТЗ;  формирование проектной документации;  формирование

ТЗ для выбора или проектирования структурных составляющих ВКА.


                              - 128 -

     Основными процедурами в подсистемах  КВКА  и  АКВКА  являются

следующие: синтез компоновок из элементов ВКА; формирование крите-

рия качества компоновок;  анализ и выбор  оптимальной  компоновки;

формирование проектной документации.

     При использовании описанной САПР в качестве подсистемы в  ГАП

ВКА  обязательным процессом является процедура проверки синтезиро-

ванных значений параметров ВКА  требованиям,  определяемым  техни-

ческими характеристиками автоматизированной производственной ячей-

ки (станок,  робот,  комплекты оснастки и инструмента), являющейся

элементом конкретной ГАП [152].  Кроме того, предусмотрена система

адаптации базы данных и накладываемых граничных условий к  измене-

нию  станочного  парка производства,  появлению новых технологий и

др.

     Использование подобной САПР, повышая качество и эффективность

труда конструктора, позволит ему получать принципиально новые тех-

нические решения.

     4.4. Конструкции ВКА, разработанные на основе синтезированных

          структур.

     4.4.1. Конструкции ВКА,  разработанные на основе  синтеза  ее

            структуры на уровне типов основных ФМ.

     Сопоставительный анализ  сформированного  с учетом морфологии

ВКА множества ее обобщенных вариантных структур (с  использованием

программного  модуля "VP1") и существующих конструкций ВКА показал

отсутствие ВКА плоского типа  с  использованием  электромагнитного

привода. Данный факт определил цель проектирования соответствующей

конструкции затвора.  В связи с тем, что величина хода штока типо-

вого  электромагнитного  привода  не позволяет обеспечить сложного


                              - 129 -

движения и требуемых перемещений уплотнительного диска для  перек-

рывания  проходного  отверстия  и  герметизации  УП в плоских уст-

ройствах, в качестве прототипа была выбрана разработанная нами ба-

зовая  конструкция  сверхвысоковакуумного затвора с двумя исполни-

тельными органами и электропневматическим приводом  [153].  Приняв

за основу структуру,  генерируемую по правилу (3.22),  получаем из

выражения (3.30) искомую формулу строения создаваемого устройства:

    

     Общий вид разработанного затвора  представлен  на  рис.  П.6,

П.6А.   Для  согласования  функциональных  параметров  сопрягаемых

основных ФМ совместно с электромагнитным приводом использован гид-

равлический усилитель, т.е. образован комбинированный привод, поз-

воляющий применять подобное решение и для устройств с цельнометал-

лической УП. Проведенный анализ множества     позволил модифициро-

вать описываемую конструкцию за счет использования для перемещения

уплотнительного  диска принципиально нового для ВКА ввода движения

- упруго деформируемого полого элемента - трубки Бурдона. Подобное

выполнение конструкции позволило упростить управление работой зат-

вора,  повысить его быстродействие и  уменьшить  дестабилизирующее

воздействие элементов затвора на вакуумную среду [154].

     Дальнейшее развитие конструкций ВКА,  включающих вводы движе-

ния  -  механизмы  непосредственного действия,  не содержащие пары

трения в вакуумной  полости,  обусловило  необходимость  получения

структуры с одним исполнительным органом. Формула строения данного

устройства получена из выражения (3.32) :

     Общий вид конструкции сверхвысоковакуумного затвора ,  реали-

зующей данную цель, приведен на рис. П.7, П.7А-В.

     Подобное выполнение затвора позволило использовать в структу-

ре  только один исполнительный орган при сохранении достоинств вы-


                              - 130 -

шеописанной конструкции [155].

     4.4.2. Конструкции ВКА,  разработанные на основе  синтеза  ее

            механизмов.

     Необходимость синтеза  механизмов  обусловлена,  как правило,

использованием электромеханического или ручного привода,  а  также

сложным  видом движения при перекрывании и герметизации проходного

отверстия,  что особенно актуально для плоских и проходных  затво-

ров.  Рассмотрим конструкции ВКА, полученные с использованием раз-

личных путей синтеза ее механизмов (см. п. 3.4.1.).

     Кинематическая схема поворотного затвора, полученная на осно-

ве анализа трехконтурной формы цепи (с использованием ППП "SSVC"),

реализованной  посредством плоских рычажных механизмов,  приведена

на рис. П.8. Формулу строения данного устройства, согласно (3.35),

можно представить в виде:

    

     Проработка и практическое воплощение полученной  схемы  меха-

низма  совмещенной  структуры  (рис.  П.9) обеспечили рациональное

движение уплотнительного диска  при  перекрывании  и  герметизации

проходного отверстия: поступательное его движение на стадии герме-

тизации и поворот уплотнительного диска на 90 на стадиях  открыва-

ния и закрыванияя затвора при небольшом ходе ведущего звена приво-

да.

     Подобное выполнение устройства приводит к повышению ресурса и

надежности работы затвора за счет исключения неравномерности  сжа-

тия уплотнителя и его трения о седло, а также обеспечения фиксиро-

ванного положения уплотнительного диска  в  каждый  момент  работы

затвора, что устраняет возможность его перекосов [120].


                              - 131 -

     Дальнейшая доработка  рассмотренной  конструкции  обусловлена

оптимизацией   созданного   механизма  по  критерию  Ф  (выражение

(2.21)). Оптимизация проводилась для механизма, расположенного вне

вакуумной полости затвора и являющегося собственно его приводом (с

использованием ППП "Р4").  Целью проектирования явилась  необходи-

мость обеспечения различных передаточных функций на стадиях перек-

рывания и герметизации проходного отверстия. Указанная цель реали-

зована  посредством  использования  двух взаимодействующих типовых

элементарных  механизмов  -  попеременно  работающих  эксцентриков

(рис.  П.10),  причем на стадии перемещения уплотнительного диска,

требующей значительных перемещений  при  малых  усилиях,  работает

эксцентрик с большим эксцентриситетом, а герметизация затвора про-

изводится эксцентриком с маленьким эксцентриситетом.  Подобное вы-

полнение устройства позволяет существенно уменьшить приводное уси-

лие для получения требуемого усилия герметизации [156].

     По отношению к используемым механизмам,  особенно расположен-

ным в вакуумной полости,  наиболее  критичны  сверхвысоковакуумные

конструкции, качество которых зачастую определется дестабилизирую-

щим влиянием  на  рабочую  сверхвысоковакуумную  среду  (величиной

привносимой  дефектности).  В связи с этим одной из основных целей

проектирования сверхвысоковакуумных клапанов и  затворов  является

уменьшение числа тяжелонагруженных пар трения в механизмах,  рабо-

тающих в вакуумной полости ВКА, либо полное их устранение, что на-

иболее труднодостижимо для конструкций плоского типа.  Другим важ-

ным аспектом разработки конструкций с электромеханическим приводом

является использование только одного привода для их функционирова-

ния, что определило цели проектирования описываемых ниже конструк-

ций сверхвысоковакуумных прямопролетных плоских затворов.

     На рис.  П.11, П.11А,Б представлен общий вид сверхвысоковаку-

умного затвора,  в котором механизм, расположенный в вакуумной по-


                              - 132 -

лости, обеспечивает поворот уплотнительного диска для перекрывания

проходного отверстия,  что не требует больших усилий, а герметиза-

ция осуществляется механизмом,  расположенным  вне  вакуумной  по-

лости. Формула строения при этом имеет вид:

            

    

     Подобная конструкция является устройством переменной структу-

ры с отключением механизма перемещения при герметизации:

    

     Достоинством разработанного  механизма  перемещения  уплотни-

тельного диска (рис.  П.11Б) является его большое передаточное от-

ношение  при незначительных габаритах,  что приводит к минимизации

критерия Ф [157].

     Вместе с тем,  рассмотренная конструкция достаточно сложна, а

механизм перемещения из-за расположения в вакуумной полости  труд-

норегулируем,  что определило цель проектирования - удаление меха-

низма из вакуумной полости (замена его механизмом непосредственно-

го действия),  т.е.  генерацию структуры по выражению (3.33).  При

этом формула строения принимает вид:

     Указанная проектная  цель  была  достигнута  в  разработанном

сверхвысоковакуумном затворе с электромеханическим приводом  путем

синтеза зубчато-кулачкового механизма,  расположенного вне вакуум-

ной полости (рис. П.12, П.12А,Б).

     Рассматриваемый затвор является конструкцией нового, ранее не

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.