RSS    

   Реферат: Разработка программатора микросхем ПЗУ

Осталось только указать, что C8 и D24 служат для начального сброса портов D4-D7, стабилитроны VD39 и VD40 формируют опорное напряжение для ЦАП-ов, а кварц Q1 необходим для программирования микроконтроллеров i87с5х, at89с5х.

На плате программатора, как видно из монтажной схемы, расположен набор посадочных мест под панельки многоразового пользования. Этот набор обеспечивает программирование серий: 27xx, 28xx, 29xx в DP7-DP9; 556PTxx в DP2-DP5; 1556хх, 89C1(2)051 в DP6; 155 PE3 в DP1; 8748(49) в DP10 и 8Х5х в DP11. Другие типы микросхем можно “уложить” в имеющиеся панельки, но рациональнее использовать внешний разъем Х2, к которому можно подключить любую плату с панелькой под конкретную серию, а также использовать нестандартные панельки под корпуса, например, типа PLCC.

Разъемы.

Разъем Х1 предназначен для подключения программатора через кабель к IBM-совместимому компьютеру на интерфейс Сentroniсs (разъем принтера). Шлейф распаивается "один в один", т.е. i-й контакт шлейфа с одной стороны разъема соединяется с i-м контактом разъема с другой стороны шлейфа (см. также раздел "Замечания").

На разъем Х2 выводятся все сигналы для программирования всех микросхем.

Через разъемы Х3 (выполненный в виде наплатного SG5) или Х5 (аналогичный тому, что на плате ПК типа IBM) поступают напряжения питания +5V, –5V и программирующее напряжение +27V – +30V (их можно получить от блока питания для ПК типа IBM с переделкой, описанной ниже).

Настройка и рекомендации.

Т.к. схема достаточно “линейна”, то настройка не представляет труда. Наиболее эффективно отстраивать плату с помощью тест - программы  test.bat (такая программа содержится на прилагаемой дискете). Первый этап теста лучше всего начать с пункта «Автоматический тест», где легко локализовать неисправность.

В разделе «Check device» имеются различные тесты, которые помогут с помощью осциллографа определить неисправное звено. Например, в одном из тестов на линии РА0–РА19 и РD0–РD7 подаются поочередно логические уровни 0 и 1 с возрастающим интервалом (счетчик). Параллельно с помощью осциллографа имеется возможность наблюдения за этими уровнями на одной из панелек или на дополнительном разъеме. Если где-либо сигнала не наблюдается или меандр с неравномерной скважностью (замыкание между сигналами), то легко последовательно проследить всю логику вплоть до разъема Х1 и выявить неисправности. Также можно открывать линии РА0–РА19 и РD0–РD7 через транзисторы VT1–VT28 для высокого напряжения. Тест «Пила» в портах D6.С, D7.A, D7.B, D7.С циклически увеличивает данные, при этом на выходе ЦАП-ов и усилителей получается пилообразное напряжение. Тест «Чтение данных» читает с порта D5.A данные и выводит  число на экран. В нормальном состоянии на экран выводится число #FF (в десятичном виде 255). Далее путем замыкания любого данного на одной из панелек с землей (на всякий случай через небольшой резистор ~ 20 Ом) должно наблюдаться изменение числа на экране. Например, если D0 замкнуть на 0, то на экране появится #FE(254). Если этого эффекта не наблюдается, то опять по цепочке выходим на неисправную микросхему, обрыв или замыкание.

Тесты имеют различные настройки в разделе Options, подробнее о каждом тесте и опциях можно узнать через контекстный Help (справка) в программе.

Замечания:

o Для качественного программирования ПЗУ не пожалейте блокировочных конденсаторов на все питания.

o !!! Рекомендуем настройку начинать с выключенным высоким напряжением +27v, т.к. возможные замыкания или некоторые неисправные элементы могут повлечь выгорание других элементов.  !!! Опцию Bus translate в таких тестах как "Пила" и т.д. можно продолжительно использовать только с радиатором на транзисторе VT33(E1).

o У разных программаторов из-за разброса параметров элементной базы напряжения Е1-Е4 могут несколько отличаться. В Uniprog Plus осуществляется коррекция этих напряжений посредством программы test.bat (раздел "Юстировка напряжений E1-E4").

Замечания.

К плате Uniprog

o В Setup-е IBM PC желательно переключить тип LPT - порта из Normal(SPP) в ECP/EPP.

o В кабеле, соединяющем PC и UniProg, необходимо сигнальные шины чередовать с землей. Т.е. расположение сигналов на плоском кабеле должно быть: сигнал1-земля, сигнал2-земля, и т.д.

o На монтажной схеме 555 ЛА13 и 555 ЛН3 суть микросхемы 155 ЛА13 и 155 ЛН3.

o D2 (на схеме 555КП11) надо использовать более мощных серий - 531 или 155.

К модулю PIC

Программирование PIC последовательного типа (т.е. для всех серий, кроме PIC1652-58) осуществляется при помощи пяти проводов (например, на разъеме Х2):

Программатор       —>      PIC16x(12x,14000)

      PA8               CLOCK

      PD0               DATA

      E4                 MCLR

           E2                              Vcc (Питание)

           GND                           GND (Земля) - это сигналы Пика могут быть на разных ножках (например, для pic16f84 CLOCK(RB6) - 12, DATA(RB7) - 13, MCLR - 4, Vcc(Vdd) - 14, GND(Vss) - 5).

Сигналы с программатора см. по схеме (так на внешнем разъеме Х2 для версии 1.x и 2.x PA8 - А18, PD0 - А4, E4 - В9, E2 - В12, GND - А10,В10)

Программирование параллельного типа (т.е. для серии PIC1652-58) осуществляется при помощи семнадцати проводов:

Программатор       —>     PIC16x52-58

      PA8               INCPC (OSC1)

      PA9               PROG/VER (T0CKI)

      PD0-7             D4-D11 (RB0-RB7)

      PA0-3             D0-D3 (RA0-RA3)

      E4                 MCLR

           E2                              Vcc (Питание)

      GND                         GND (Земля)

Распределение памяти для модуля PIC в бинарном виде представлено в следующем виде:

с нулевого адреса - память программ, далее - память данных(если она есть) в словном размере и в конце восемь слов: первые четыре - ID, далее 5,6,7-е зарезервированные слова(в 7-м слове в новых микросхемах содержится идентификационный код) и, наконец последнее слово - конфигурационное. Т.е. :

0 - size_addr-1                      - память программ;

size_addr - size_data-1  - память данных;

size_data - size_data+3  - ID;

NNN_data+4              - резерв;

NNN_data+5              - резерв;

NNN_data+6              - резерв или идентификационный код микросхемы;

NNN_data+7              - конфигурационное слово;

Биты слов, выходящие за пределы разрядности соответствующей памяти, игнорируются.

Можно также пользоваться .hex(или другими текстовыми форматами) файлами или конвертировать их в бинарный вид (cм. конверторы, пункт Source на стр. 6).

Более подробную информацию можно получить в контекстной справке по клавише 'F1' в модуле PIC.

К модулю FLASH

Микросхемы, имеющие более 32 выводов, можно программировать через внешний разъем  Х2:

Программатор       —>      FLASH

           E2                              Vcc (Питание)

      E3                 Reset

      E4                 Vpp

      PA16              CE

      PA17              OE

      PA18              WE

      PA0 - PA15       A0 - A15

      PD0 - PD7        D0 - D7

      GND                           GND (Земля)

      Если имеется сигнал BYTE, то он должен быть замкнут но 0, чтобы обеспечить байтовую шину данных.

Адрес РА19 зарезервирован для внешнего регистра, расширяещего адресное пространство до 24 (и более), т.е. дополнительные A16-A23 а также A-1. В ближайшее время ПО будет поддерживать этот регистр (поэтому пока можно программировать эти ПЗУ блоками по 64к).

К модулю ПОСЛЕДОВАТЕЛЬНЫХ ПЗУ и AVR.

Последовательные ПЗУ в основном имеют не более 8 выводов, назовем их P1-P8, поэтому для программирования было решено использовать шину данных PD0-PD7. Т.е. к соответствующему выводу микросхемы P (DIP - корпуса) подключается соответствующий сигнал PD (PD0->P1, PD1->P2, ..., PD(x-1)->Px) ). При этом на тот вывод где земля (GND) подается логический 0, а где питание 1, напряжение Е1 выставляется на "напряжение питания" + 0.5v (с поправкой на падение на транзисторах). Дополнительно на Е2 выставляется точное напряжение питания, чтобы можно было непосредственно подключить его на P=Vcc (обычно вывод P8). А также на один (или несколько) из адресов шины PA0-PA7 соответствующему P=GND, подается логическая 1 для возможности подключить "землю" через полевой N-канальный транзистор (т.е. PA(x-1)->транзистор->Px=GND) следующим образом:

                                            Px

                               

                                                                                например IRF7303

                

  PA(x-1)                            

               

                                                  GND

Такое подключение земли более корректно, чем через PDx (где логический ТТЛ уровень 0), но никто не мешает непосредственно заземлить соответствующий вывод GND микросхемы.

Для подключения последовательных ПЗУ планируется выпустить переходную панель с распиновкой:

Программатор --->                                  ПЗУ

  PD0 -PD7                                       P1-P8

  E2   через полевой P-транзистор                     P8 (управления пока нет)

  PA2 -PA4 через полевой N-транзистор           P3-P5

Приведем примеры подключения СТАНДАРТНЫХ микросхем следующих серий:

Подключение серии IIC(24xx)

                                              PA3 через полевой N-транзистор или  GND

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.