RSS    

   Реферат: Расчет надежности электроснабжения подстанции Южная

Определим   среднеквадратичное отклонение:

                   .  

          Вычислим коэффициент вариации по формуле:

                   .        

          По номограмме находим значение параметра формы 1/a=0,36. По найденным значениям вычислим параметр масштаба С  распределения Вейбула-Гниденко :

                           

Г(1,36)=0,8902

Среднее время безотказной работы для распределения Вейбула-Гниденко определим по формуле

         

          l2ЛЭП=1/Т2ЛЭП

          В таблице 13 представлен статистический ряд восстановления отказов ЛЭП.

Интенсивность восстановления определим по формуле (1.16)

          Вероятность восстановления  ЛЭП определяется по формуле

                   Рвос.ЛЭП=1-е-m.

Таблица 13

Статистический ряд восстановления внезапных и постепенных отказов ЛЭП

восстановление

7,1 9,2 11,3 13,4
8,9 10,9 13 8,6
10,7 12,7 8,1 10,3
12,3 4,8 9,9 12,1
4,5 9,6 11,7 18,8

Т=

10,395

m=

0,0962

Результаты расчетов по приведенным выше формулам сведены в табл.11,12,13.

1.4. Модель отказов и восстановления для разъединителей

Представим разъединитель как элемент состоящий из одного элемента с внезапным отказом, с показательным законом распределения наработки на отказ (1,1). Статистический ряд представлен в таблице 14, 15 наработок на отказ и времени восстановления.

Параметр показательного закона l находим по формуле:

                          

где хср— среднеее значение наработок на отказ.

          Среднее время безотказной работы  определим по формуле

                       

Таблица 14

Статистический ряд внезапных отказов разъединителей

X, г

X, г

X, г

X, г

6,64 7,40 6,68 7,13
7,06 7,17 7,44 7,06
6,86 7,12 7,20 7,22
7,20 6,98 6,83 7,11
6,79 6,83 7,24 7,48

Т=7

l=0,14143

Интенсивность восстановления определим по формуле (1.16)

Вероятность восстановления разъединителей определяется:

                   Рвос.раз=1-е-m.

Таблица 15

Статистический ряд  времени восстановления разъединителей

восстановление

8,3 6 6,2 7
7,5 8 8,3 7,2
9,1 9,2 10,9 9
6,8 10,4 9,4 8,1
10,1 7,1 8,5 6,1

Т=8,16

m=0,12255

Результаты расчетов по приведенным выше формулам сведены в табл.14,15.

1.6. Модель отказов и восстановления для отделителей и короткозамыкателей

Для отделителей и короткозамыкателей составим модель аналогичную разъединителям и проведем подобный расчет. Исходные данные и результаты расчета сведем в таблицу 16,17,18,19.

Таблица 16

Статистический ряд внезапных отказов отделителей

X, ч

X, ч

X, ч

X, ч

31377 35695 31623 34179
33786 34416 35974 33762
32653 34130 34558 34679
34579 33325 32455 34091
32231 32471 34825 36149

Т=33848

l=3E-05

Таблица 17

Статистический ряд  времени восстановления отделителей

восстановление

8,1 5,9 6,1 6,9
7,4 7,8 8,1 7,1
8,9 9,0 10,6 8,8
6,7 10,2 9,2 7,9
9,9 7,0 8,3 6,0

Т=7,98933

m=0,12517

Страницы: 1, 2, 3, 4, 5, 6, 7


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.