RSS    

   Реферат: Моделирование ЭВМ

   Напишем функции формирования чисел по требуемому закону распределения. Эти числа запишем в файл. Оценим качество полученных последовательностей ПСЧ, пользуясь автоматизированной системой analize. Проанализируем результаты исследования и сделаем вывод о качестве каждой последовательности и о возможности их использования в стохастической модели.

                     Сведения о непрерывных случайных величинах

Закон распределения случайных величин

       Нормальный

           N(m,s)

       Экспоненц-ый

       s(1,1/l)=Э(l)    

Аналитическое выражение плотности вероятности f(x)

              1       -(x-m)

 f(x)=-------- e    2s

         sÖ2p

                      -lx 

          f(x)=l e

Определяющие параметры

   | m | <

      s  > 0

l > 0
Числовые                    m характеристики           D

             m

              s

                 1/l

                 1/l

Алгоритм получения случайной величины

       ______  

xi=Ö-2 ln z1 cos2p z2

xi+1=Ö-2 ln z1 cos2p z2

( m=0; D=1 )

                 1

        xi=- ---- ln zi

                 l

Область значений случайной величины

   Исследование последовательности нормально распределенных ПСЧ.

                                                                         (Программа в приложении № 3)

     

                          Определение числовых характеристик

 

Характеристика

Теоретическое

значение

Статистическое

значение

1 Мин.знач.совокупности 11 12.31
2 Макс.знач.совокуп-ти 24 25.23
3 Мат. ожидание 16 16.02
4 Дисперсия 2 2.07
5 Сред.квадр.отклонение 1 1.439
6 Коэфф.ассиметрии 0 0.35
7 Эксцесс 0 2.716

      Аппроксимация стат. распределения теоретической функцией.


     Проверка соответствия чисел последовательности требуемому распределению дает следующие результаты:

   Критерий Хи-Квадрат:

          Х2=0.0000813

   С доверительной вероятностью 0.999 можно утверждать о согласованности теоретических и статистических данных.

   Критерий Колмогорова:

   Максимальная разность max| F(x)-F*(x) | = 0.0823

   С доверительной вероятностью 0.999 можно утверждать о согласованности теоретических и статистических данных.

            Определение характеристик корреляции

                    r(t)

                     1

                    

                   0                                                     t

                                                                5

        Рис. 4. График изменения коэффициента корреляции.

Вывод:

   Полученная последовательность ПСЧ, имеющая нормальный закон распределения, удовлетворяет предъявленным требованиям по качеству и может быть использована в задачах моделирования, т. к.

- числовые характеристики имеют незначительное отклонение от 

  теоретических значений,

- по критериям согласия получены удовлетворительные значения  

  доверительных вероятностей,

- числа последовательности достаточно независимы, о чем свидетельствует

  график (Рис. 4.)

   Последовательности ПСЧ для 2-го и 3-го пользователей генерируются аналогично, с той лишь разницей, что мат. ожидание у них 17 и 18 соответственно.

   Исследование последовательности  экспоненциально распределенных ПСЧ

                                                                        (Программа в приложении № 3)

             Определение числовых характеристик

        

 

Характеристика

Теоретическое

значение

Статистическое

значение

1 Мин.знач.совокупности 0.5 0.8
2 Макс.знач.совокуп-ти 3.5 2.358
3 Мат. ожидание 0.8 1.06
4 Дисперсия 0.08 0.066
5 Сред.квадр.отклонение 0.5 0.2575
6 Коэфф.ассиметрии 0 1.682
7 Эксцесс 0 1.097

   Аппроксимация стат. распределения теоретической функцией


   Проверка соответствия чисел последовательности требуемому закону распределения дает следующие результаты:

   Критерий Хи-Квадрат:

   Значение Х2=2310

   С доверительной вероятностью 0.999 можно утверждать о согласованности теоретических и статистических данных.

   Критерий Колмогорова:

   Максимальная разность max| F(x)-F*(x) | = 0.023

   С доверительной вероятностью 0.91 можно утверждать о согласованности теоретических и статистических данных.

 

             Определение характеристик корреляции

                    r(t)

                     1

                    

                   0                                                     t

                                                                5

        Рис. 5. График изменения коэффициента корреляции.

Вывод:

   Полученная последовательность ПСЧ, имеющих экспоненциальный закон распределения, удовлетворяет предъявленным требованиям по качеству и может быть использована в задачах моделирования, т. к.

- числовые характеристики имеют незначительное отклонение от 

  теоретических значений,

- по критериям согласия получены удовлетворительные значения  

  доверительных вероятностей,

- числа последовательности достаточно независимы, о чем свидетельствует

  график (Рис. 5.)

           3.5. Описание моделирующей программы для                   

                           стохастической модели

   Преобразуем ранее созданную детерминированную модель вычислительной системы в стохастическую модель. Для этого потребуются следующие изменения детерминированной программы:

- вставим программный генератор РРПСЧ - встроенную функцию random( )

Страницы: 1, 2, 3, 4, 5


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.