RSS    

   Реферат: Информационная система складского терминала

Статистика показывает, что более 80% аварий (катастроф) на производстве носит антропогенный характер, 64% аварий происходит за счет нарушения правил эксплуатации техники и 16% - за счет некачественного строительства. Наиболее крупные аварии последних лет: 1986 г. – взрыв цистерн с метилизоцианатом  в г. Бхопал (Индия), в результате погибло 3150 чел. и более 200 тыс. человек отравлено; 1989 г. – разрушение изотермического резервуара с аммиаком на заводе г. Иокава (Литва) привело к гибели 8 чел., отравлено более 60 чел., заражение площади в 400 км2, эвакуировано около 40 тыс. чел. Катастрофической была авария на башкирском продуктопроводе в мае 1989 г. – взрыв газоконденсатного облака по мощности равный взрыву 300 т. тротила привел к гибели 780 человек. Подобная авария (взрыв 120 т. гексогена ) в Арзамасе привела к гибели 91 человека, ущерб составил 76 млн. рублей. Загрязнение реки Шугуровка (г. Уфа) фенолом в марте 1990 г. превысило ПДК в 4000 раз, ущерб составил 162 млн. рублей.

Радиационные аварии потенциально еще более опасны. Авария в 1979 г. на АЭС «Три-Майл-Айленд» (США) привела к радиоактивному заражению территории в 1000 км2, активность выброса составила 1.5 млн. Ки. ущерб исчислялся более чем 1 млрд. долл.

В результате Чернобыльской катастрофы (1986 г.) погибло более 100 человек, острой формой лучевой болезни заболело 380 человек, радиоактивному заражению подверглось одиннадцать областей России, Украины и Беларуси с населением 17 млн. человек, активность выброса составила 50 млн. Ки, ущерб исчисляется в 15 млрд. рублей. С 1971 по 1991 г. в мире произошло более 150 аварий на АЭС. За последние 20 лет в результате возникновения чрезвычайных ситуаций погибло 3 млн. человек, пострадало 800 млн. чел.

В СНГ в зонах химически опасных объектов проживает около 60 млн. человек, в радиационно-опасных зонах – 120 млн. человек. Таким образом, при авариях (катастрофах) на радиационно, пожаро-, взрыво- и химически опасных объектах происходят радиоактивное, химическое заражение окружающей среды, разрушения и пожары, характеризующиеся:

ü длительностью, масштабностью заражения (площадь радиоактивного заражения от ЧАЭС составляет 1.5 млн. га, радиус разрушений при взрыве под Уфой – 15 км);

ü серьезным морально-психологическим воздействием на человека вследствие необычности поражающего действия (внешняя картина, высокие температуры, отравление атмосферы, нечувствительность людей к поражающим факторам на начальных этапах развития аварии), вызывающего оцепенение, потерю воли, фобии и т.д.;

ü трудоемкостью, малоэффективностью и большой стоимостью защиты (эффективность дезактивационных работ составляет 5% от вложенных средств, ликвидация последствий продолжается месяцами, годами);

ü массовыми жертвами и большими материальными потерями (ежегодно в СНГ происходит около 19 млн. несчастных случаев; 700 тыс. человек травмируются на производстве, в том числе 14 тыс. погибает, инвалидами производства становятся 30 тыс. человек. Материальный ущерб от пожаров только в 1990 г. составил 1 млрд. руб.).

Опыт показывает, что при ликвидации последствий ЧС на объектах народного хозяйства оценка обстановки в ряде случаев производилась с запозданием и неточно, прогнозирование игнорировалось, руководители, рабочий персонал объекта и население района аварии не были подготовлены по вопросам пожарной, химической, радиационной безопасности.

 

5.2.1. Оценка пожарной обстановки в населенных пунктах

Пожарная обстановка в населенных пунктах определяется, исходя из характера застройки, огнестойкости зданий и категории пожарной опасности объектов. Исходные данные для оценки обстановки:

R   – расстояние между зданиями, м;

L   – длина фронта пожара, м;

j   влажность воздуха, %;

–    тип защитных сооружений (встроенные, отдельно стоящие, негерметичные).

Vвскорость ветра, м/с.

q  Устанавливаем степень огнестойкости зданий и сооружений объекта, исходя из типа материала и времени развития пожара (tразв)

I ст. огнестойкости (tразв  до 2 часов) – основные сооружения из негорючих материалов повышенной сопротивляемости

II ст. огнестойкости (tразв » 2 часа) – основные элементы сооружений – негорючие материалы

III ст. огнестойкости (tразв ≤ 1,5 часа) – сооружения каменные с деревянными оштукатуренными переборками

IV ст. огнестойкости (tразв ≤ 1 час) – оштукатуренные деревянные здания

V ст. огнестойкости (tразв ≤ 1 час) – деревянные здания и сооружения

Кроме того, следует учитывать, что в зданиях I – II ст. огнестойкости пожар возникает от повреждения газовых и электрических сетей при взрывах от Pф = 30÷50 кПа, в IV – V – от Pф ≈ 20 кПа.

q  Устанавливаем категорию пожарной опасности (ПО) объекта исходя из характера технологического процесса и типа промышленного производства. Категории объектов по ПО:

А – нефтеперерабатывающие заводы, химические производства, склады бензина, растворителей, красок.

Б – производства приготовления и транспортировки угольный пыли, древесной муки, цеха СТК, воздушные коммуникации.

В – деревообрабатывающие производства, склады леса, масел, текстильные производства, стапеля с деревянными лесами.

Г – металлургические производства, котельные, литейные, транспортные цеха.

Д – предприятия по холодной обработке металлов, трубомедницкие, корпусные, механосборочные цеха.

 На объектах категории А и Б пожары возникают при разрушении систем жизнеобеспечения от Pф = 10÷30 кПа.

q  Определяем плотность застройки объекта, населенного пункта по формуле:

где    - площадь зданий, км2

           - площадь района, км2

q  Определяем вероятность возникновения и распространения пожара (график, рис 5.2.)

P = f (R, П)

Можно определить вероятность распространения пожара в зависимости от R – расстояния между зданиями (табл. 5.4.).

Таблица 5.4.

R, м 10 20 30 50
P, % 65 27 23 3

q  Определяем скорость распространения пожара.

Для средних топографических и климатических условий определение производится по графику (рис. 5.2.) Скорость распространения пожара в населенных пунктах с деревянной застройкой составляет при υв = 3 - 4 м/с,

Vп  = 150 - 300 м/ч, время развития пожара 0.5 часа. В населенных пунктах с каменными зданиями (при этой же скорости ветра) Vп  = 60 - 120 м/ч

При высокой и средней скорости распространения пожара требуется срочная эвакуация населения, рис 5.3.

q  Определение проходимости улиц для эвакуации и тушения пожара (Пр) табл. 5.5.

Пр = f (Cт.0, tгор)

Таблица 5.5.

Степень огнестойкости, Ст.0 Общая продолжительность пожара Время наступления максимальной скорости горения, ч Безопасные расстояния от горящих зданий, м
Зона слабых разрушений Зона сильных разрушений
I, II 2 – 3 1 – 2 0.1-0.5 50-20
III 5 – 6 7 – 8 0.2-1.2 50-20
IV, V 2 – 3 8 – 10 0.3-1.5 50-20

q  Определение характера воздействия пожара на людей, находящихся в защитных сооружениях. Люди в зоне пожара подвергаются воздействию высокой температуры (ВТ) и вредных примесей газовой среды (дым, окись углерода), в результате чего получают легкое, среднее или тяжелое отравление (ЛО,СО,ТО). Характер воздействия газовой среды на человека отражен в табл. 5.6.

Таблица 5.6.

Вид пожара Тип убежища Характер воздействия за время, ч
0.25 0.5 1.0 3.0 6.0
Сплошной пожар на ОНХ, в населенном пункте с нарушением герметизации ЛО, ВТ СО, ВТ ТО, ВТ
Встроенные ЛО, ВТ СО, ВТ
Отдельно стоящие ЛО СО

q  Потребность в силах и средствах пожаротушения рассчитывается по формуле:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.