RSS    

   Курсовая работа: Управління мережевими ресурсами

В мережах класу В мережева адреса визначається двома октетами. Перше значення якого знаходиться в діапазоні 128–191. В адресі хоста знаходяться два останніх октета, тому в класі В визначено 16328 мережеві адреси, а в кожній мережі може бути видано 65534 адреси хоста. Мережі класу В належать великим організаціям і університетам.

В адресах класу С адреса займає 3 октета. Перше значення знаходиться в діапазоні 192–223. Такий порядок організації адреси дозволяє організувати близько 2 мільйонів мереж, проте кожна мережа може включати не більше ніж 354 хоста. Мережі класу С належать невеликим організаціям і установам.

Адреси класу D використовуються в службових цілях в для одночасної передачі даних по багатьом адресах. Значення адреси першого октета знаходиться в межах 224–239.

В мережах класу Е перший октет набуває значення від 240–242. Не використовується, а зарезервований для використання в майбутньому. При обміні інформацією між протоколами TCP/IP використовуються тільки числові IP-адреси, а домені імена допомагають лише орієнтуватись, якій мережі належить той чи інший комп’ютер.

У двійковій форматі IP-адреса виглядає приблизно так:

11000000 01101010 01111110 11000001

У такому вигляді його нелегко зрозуміти користувачам, за винятком хіба що програмістів (і комп'ютерів). Тому, винятково для зручності, IP-адреси звичайно записують у форматі октетів, розділених крапками. У цьому форматі кожен байт із 32 бітів номера перетвориться в десяткове число. 192.106.126.193

Кожній мережній платі, що працює в мережі TCP/IP, привласнюється унікальна IP-адреса, що ідентифікує її у всій мережі, а не тільки в локальному сегменті.

Відкіля беруться ці IP-адреси? Де довідатися, які числа варто включати в них? Відповідь залежить від «області охоплення» вашої мережі. Якщо ви створюєте IP-адреси для локальної мережі TCP/IP, що ніколи не буде підключена до Internet, то можете призначати їх до деякої міри довільно (досить тільки пам'ятати, що двом мережним платам не можна призначати однакову адресу). Якщо ж ви збираєтеся підключитися до Internet, необхідно одержати унікальні IP-адреси, звернувшись у міжнародну організацію InterNIC.

InterNIC – єдина організація, що уповноважена виділяти IP-адреси заінтересованим фірмам і організаціям. У перший погляд можна вважати, що вона виділяє групи IP-адрес, ґрунтуючись на розмірах організацій. З цією метою InterNIC надає організації конкретні числа для першого байта (перших двох, чи трьох байтів), а для призначення інших адрес дозволяє організації використовувати номери, що залишилися, на власний розсуд. Так, наприклад, якщо ви запросили в InterNIC набір адрес Internet, вам можуть надати набір, скажемо, 192.106.Х.Х. Це означало б, що всі ваші IP-адреси повинні починатися з префікса 192.106, але ви можете призначити номера (до 255) по власному бажані іншим двом октетам. Частину, призначену InterNIC, називають полем мережі адреси, а ту, що призначено вами, – полем вузла (host portion).

Останній крок адресації Internet полягає в ідентифікації не власне комп'ютера, а підмережі, тобто тієї частини мережі, до якої комп'ютер входить. Це досягається не за допомогою зовнішньої мережевої адреси, як в адресах IPX/SPX, а з масками підмережі. Маска підмережі – число, яке можна «накласти» на IP-адресу. Якщо мережна частина IP-адрес комп'ютерів збігається з нею, значить, машина знаходяться в одній підмережі. У противному випадку, дві IP-адреси відносяться до різних підмереж.

Встановити зв'язок між двома комп'ютерами однієї підмережі неважко. Пристрої передають дані (відповідно до вимог протоколу TCP/IP) за допомогою широкомовної передачі, а комп'ютер, адреса якого збігається з зазначеним у пакеті IP, приймає дані. Якщо комп'ютеру однієї підмережі необхідно зв'язатися з комп'ютером в інший, – запит повинен надійти на маршрутизатор, що з'єднує підмережі. Маршрутизатор переглядає мережну адресу місця призначення, визначає, чи знаходиться він у даній підсмережі чи ні, а потім направляє пакет у наступну підмережу. Потім цей маршрутизатор перевіряє IP-адресу місця призначення, визначає, чи знаходиться він у даній підмережі, і слідом за цим або передає повідомлення за допомогою широкомовної передачі, або знову направляє пакет в наступну підмережу. Ця процедура продовжується до виявлення потрібної підмережі.

Коли пакет надходить в місце призначення, протокол визначення адреси (ARP) перетворить IP-адресу в апаратну адресу мережної плати. Крім того, протокол ARP відповідає за трансляцію адрес вихідних даних.

3.2 Протокол IP версії 6

помилка безпека комп'ютерний протокол

Internet втілив пророкування авторів фантастичних романів про створення світової комп'ютерної мережі. Оскільки ж ця мережа працює по протоколі TCP/IP, його зміни відповідно відбивають і потреби цієї глобальної мережі.

Наприкінці 1998 р. протокол IP – частина набору протоколів TCP/IP, що відповідає за маршрутизацію пакетів по мережі, – почали адаптувати до змін типів переданих даних і для поліпшення керування зростаючого графіка Internet. Зміни в протоколі дозволяють:

– спростити формати заголовків, що дозволяють компенсувати вплив на мережу громістких пакетів IP;

– поліпшити підтримку розширень і параметрів, включаючи пробіл для порожніх розширень з метою полегшення зміни формату пакета (якщо це знадобиться надалі);

– ввести мітки потоків, що ідентифікують потоки пакетів, що надходять з конкретного вузла;

– ввести додаткові розширення, що підвищують можливість контролю помилок і ідентифікації користувачів, а також (при необхідності) захист даних.

Підвищена гнучкість маршрутизації. Логічно IP-адреси зовсім нескладні: їхнє число не перевищує того, що можна «вижати» з 32 біт, тобто всього-на-всього 4294967296 (близько 4 мільярдів), а кожен пристрій у Internet «вимагає» власної IP-адреси. Якщо взяти до уваги, що не всі адреси доступні, то це число додатково обмежується наступними причинами:

Десяткове значення кожного октету 32-бітової адреси не перевищує 255.

Багато адрес резервуються для цілей, відмінних від тих, для яких призначені звичайні IP-адреси. Наприклад, адреси, що починаються з 10 у першому октеті використовуються тільки локально.

Фірмам і організаціям видають групи адрес, якими вони розпоряджаються самостійно, незалежно від того, потрібні вони їм чи ні. Наприклад, всі адреси, що починаються з 192.233.х.х належать фірмі Novell. І навіть якщо адреса 192.233.54.5 у ній не використовується, ніхто, крім Novell, не зможе їм скористатися. Для зменшення числа необхідних IP-адрес використовувалось кілька спроб (сервери DHCP для тимчасового виділення адрес, CIDR і т.п.). Однак число користувачів Internet росте, і незабаром будуть потрібні 128-бітові адреси. 128-бітові IP-адреси необхідні точно так само, як телефонні номери з 10 цифр – більш короткі ідентифікатори вже непридатні.

Для полегшення адресації пакетів групам користувачів (не обов'язково підмережам чи мережам) передбачається використання групових адрес (anycast address). Замість відсилання пакетів індивідуально кожному члену групи, ви повинні будете відсилати їхньому кластеру, що являє собою логічну, а не фізичну групу. Групові адреси (anycast addresses) замінять широкомовні адреси (broadcast address), використання яких передбачено протоколом IPv4.

3.3 Мітки потоків (Flow labelling)

Подовження адрес може заподіяти незручності користувачам, якою прийдеться їх вводити, однак спростить ідентифікацію комп'ютерів Internet. Інша проблема Internet, що викликає занепокоєння, – трафік.

На початку своєї появи Internet підтримувала невеликий трафік. Велику частину даних, переданих по мережі, складали файли і повідомлення електронної пошти. Однак згодом характер трафіка змінився. Тепер він складається з підтримки груп новин і дошок оголошень, що дозволяють посилати повідомлення на загальний огляд. З'явилися кімнати для переговорів (chat rooms) і Web. Крім того, у даний час стали можливі і телефонні переговори по Internet. Завантаження даними продовжує рости, і це викликано ростом числа служб і користувачів – вони самі по собі завантажують трафік значно більше, ніж передача файлів.

Internet – це безліч мереж, з'єднаних маршрутизаторами. Кожен маршрутизатор відповідає за ідентифікацію найкращого шляху передачі даних до місця призначення. З цією метою він повинен ідентифікувати місце призначення кожного прийнятого пакета, тобто відкрити і досліджувати безліч пакетів. Отож, у пакеті IPv6 є поле, де можна вказати конкретний потік, до якого відноситься пакет. Ідея така: якщо маршрутизатор установить, що пакет є частиною потоку пакетів, що йдуть в те саме місце, йому фактично немає потреби визначати, де знаходиться це місце, після того, як він досліджує перший же пакет у минаючій групі (flow group). За замовчуванням маршрутизатор повинний «пам'ятати» мітку потоку протягом шести секунд, однак цей час можна збільшити вручну.

3.3.1 Пріоритет пакета

Іноді трафік Internet може стати настільки важким, що пакет може «загинути». Як правило, пакети відкидаються без обліку їхньої важливості. Однак пакетам IPv6 можна привласнювати пріоритети відповідно до призначення.

Значення пріоритетів розділені на два діапазони: 0–7 і 8–75. При перевантаженні мережі пакети з нижчим пріоритетом (номером) в межах даного діапазону відкидаються в першу чергу, причому кожен діапазон розглядається окремо. Іншими словами, пакет із пріоритетом 6 не обов'язково відкидається раніше пакета з пріоритетом 8, оскільки пакет із пріоритетом 6 у межах свого діапазону має вищий пріоритет.

Значення пріоритетів 0 – 7 використовують для вказівки пріоритету трафіка, для якого джерело забезпечує контроль перевантаження (congestion control), тобто трафік, що використовує протокол вищого рівня (наприклад, TCP) для відстеження здатності системи керувати потоком даних, при перевантаженні системи переривається. Нижче приведені значення пріоритетів графіка з контролем перевантаження, передбачені специфікацією IPv6. 0 – трафік без пріоритету, 1 – трафік – «заповнювач» («Filler» traffic) (мережні новини), 2 – передача, що необслуговується, даних (електронна пошта), 4 – передача великого обсягу, що обслуговується, даних (FTP, NFS), 6 – інтерактивний трафік (telnet, протокол дисплея), 7 – керуючий трафік Internet (маршрутизуючі протоколи, SNMP).

Пріоритети 3 і 5 зарезервовані на майбутні категорії. Значення 8 – 15 використовують для вказівки пріоритету трафіка, що не переривається у відповідь на перевантаження. До нього відносяться пакети мовної і відеоінформації, що відсилаються з постійною швидкістю. Вони не відзначені в специфікації, але, як правило, більш важлива інформація (скажемо, слабко помітний голос) повинна мати пріоритет вище, ніж інформація, що при передачі мала б чудову якість, але малоістотна (скажемо, високоякісна відеоінформація).

3.3.2 Підтримка найбільших пакетів

Серед інших розширень (extensions), призначених для поліпшення «відгуку» IPv6 на умови роботи в Internet, можна відзначити ті, котрі дозволяють збільшити розмір пакетів IP, тобто нести більший обсяг корисних даних у порівнянні з IPv4. Це дуже корисна можливість, оскільки застосування великих пакетів дозволяє передати дані за допомогою меншого числа пакетів, що, у свою чергу, зменшує затримку при маршрутизації пакетів.

Без використання нових параметрів, таких як пріоритети і керування потоками, адресація пакетів була б значно складнішою. Якщо ж у пакеті цих установок не існує, нові можливості ігноруються. Перехід на новий протокол не відбувається автоматично.

Не вдаючись у деталі, вкажу чотири методи переходу мережі на протокол IPv6:

– підтримка обох протоколів;

– включення в один пакет адрес для обох протоколів;

– створення тунелю IPv6 за допомогою протоколу IPv4;

– трансляція заголовків для того, щоб вузли IPv6 могли зв'язуватися з вузлами IPv4.

Якщо ж ви зважитеся пройти весь цей шлях, вам доведеться обновити всю мережу в наступному порядку.

– обновити сервер DNS для підтримки нових адрес;

– обновити вузли для підтримки як IPv4, так і IPv6;

– розгорнути обновлені вузли;

– обновити область (сегмент мережі) для повного переходу на протокол IPv6, причому обидва протоколи повинні підтримувати тільки граничні маршрутизатори;

– обновити маршрутизатори для повного переходу на протокол IPv6;

– розгорнути нові маршрутизатори.

Отже, ви обновляєте систему визначення імен, а потім, працюючи «зсередини», поширюєте IPv6 по всій мережі, причому по ходу процесу забезпечуєте сумісність протоколів.


Страницы: 1, 2, 3, 4, 5


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.