RSS    

   Курсовая работа: Транспортная задача линейного программирования

Транспортная задача с избытком запасов.

Сведем её к ранее рассмотренной транспортной задаче с правильным балансом. Для этого, сверх имеющихся n пунктов назначения В1, B2, ... , Bn, введём ещё один, фиктивный, пункт назначения Bn+1, которому припишем фиктивную заявку, равную избытку запасов над заявками 

 bn+1 = å аi - å bj ( где i=1,...,m ; j=1,...,n ) ,

а стоимость перевозок из всех пунктов отправления в фиктивный пункт назначения bn+1 будем считать равной нулю. Введением фиктивного пункта назначения B n+1 с его заявкой b n+1 мы сравняли баланс транспортной задачи, и теперь ее можно решать, как обычную транспортную задачу с правильным балансом.

Транспортная задача с избытком заявок.

Эту задачу можно свести к обычной транспортной задаче с правильным балансом, если ввести фиктивный пункт отправления Am+1 с запасом am+1 равным недостающему запасу, и стоимость перевозок из фиктивного пункта отправления во все пункты назначения принять равной нулю.

Задача, двойственная к транспортной.

Построим задачу, двойственную к транспортной. С этой целью вспомним, что каждому пункту отправления  и назначения  отвечает определенное огра­ничение

(6.1)

 

В то же время каждому ограничению из (6.1) сопоставляется определенная неизвестная в двойствен­ной задаче. Тем самым устанавливается соответствие между всеми пунктами  и  и всеми неиз­вестными двойственной задачи.

Обозначим неизвестную в двойственной задаче, отвечаю­щую пункту отправления , через , а пункту назначения  – через .

Каждому неизвестному в транспортной задаче соответ­ствует ограничение, связывающее неизвестные в двойственной задаче. Неизвестное  входит ровно в два ограничения системы (6.1): одно из них отвечает пункту , а другое – пункту . В обоих этих уравнениях коэффициент при  равен 1. Поэтому соответствующее  ограничение в двой­ственной задаче имеет вид

(6.2)

 


 .

Правая часть неравенства (6.2) равна , потому что именно с этим коэффициентом неизвестная  входит в миними­зируемую формулу (2.4).

Оптимизируемая форма двойственной задачи имеет вид

(6.3)

 
 

Таким образом, задача двойственная к транспортной форму­лируется следующим образом. При ограничениях (6.2) макси­мизировать формулу (6.3). Подчеркнем, что знак значений неиз­вестных  и  может быть произвольным.

Предположим, что нам известно некоторое допустимое базисное решение транспортной задачи, в котором все базис­ные неизвестные строго положительны. Это решение оптимально лишь в том случае, когда соответствующая ей система оказывается совместной. Эта система возникает из системы (6.2), если в ней все неравенства, отвечающие базисным неизвестным  заменить точными равенствами.

В итоге приходим к соотношению:

(6.4)

 
 (для всех свободных неизвестных )

Тем самым мы убеждаемся, что признак оптимальности в работе по методу потенциалов совпадает с необходимым и достаточ­ным условием оптимальности.

7.Пример решения транспортной задачи.

В городе N имеется 4 склада Аi, на которых хранится ткань (в рулонах) и 5 магазинов Bj, занимающихся продажей ткани. Ниже, в таблице, приведены данные по количеству рулонов на каждом складе, запросы магазинов и стоимость перевозки одного рулона из Аi в Bj. Необходимо составить такой план перевозок, при котором запросы магазинов будут удовлетворены при минимальной суммарной стоимости перевозок.

 Магазины

Склад

B1

(b1=40)

B2

(b2=50)

B3

(b3=15)

B4

(b4=75)

B5

(b5=40)

А1 (а1=50) 1,0 2,0 3,0 2,5 3,5
А2(а2=20) 0,4 3,0 1,0 2,0 3,0
А3(а3=75) 0,7 1,0 1,0 0,8 1,5
А4(а4=80) 1,2 2,0 2,0 1,5 2,5

В данном случае Σai=225 >Σbj=220 => имеем дело с открытой моделью транспортной задачи. Сведем ее к закрытой введением фиктивного магазина B6 с потребностью b5=225-220=5 и стоимостью перевозок сi6=0.Имеем таблицу:

 Магазины

Склад

B1

(b1=40)

B2

(b2=50)

B3

(b3=15)

B4

(b4=75)

B5

(b5=40)

B6

(b6=5)

А1 (а1=50) 1,0 2,0 3,0 2,5 3,5 0
А2(а2=20) 0,4 3,0 1,0 2,0 3,0 0
А3(а3=75) 0,7 1,0 1,0 0,8 1,5 0
А4(а4=80) 1,2 2,0 2,0 1,5 2,5 0

Математическая модель: обозначим xij – количество товара, перевозимого из Аi в Bj. Тогда

 x11 x12 x13 x14 x15 x16

x21 x22 x23 x24 x25 x26

X = x31 x32 x33 x34 x35 x36 - матрица перевозок.

x41 x42 x43 x44 x45 x46

min(x11+2x12+3x13+2,5x14+3,5x15+0,4x21+3x22+x23+2x24+3x25+0,7x31+x32+x33+0,8x34+1,5x35++1,2x41+2x42+2x43+1,5x44+2,5x45) (1)

x11+x12+x13+x14+x15+x16=50

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.