Курсовая работа: Транспортная задача линейного программирования
Транспортная задача с избытком запасов.
Сведем её к ранее рассмотренной транспортной задаче с правильным балансом. Для этого, сверх имеющихся n пунктов назначения В1, B2, ... , Bn, введём ещё один, фиктивный, пункт назначения Bn+1, которому припишем фиктивную заявку, равную избытку запасов над заявками
bn+1 = å аi - å bj ( где i=1,...,m ; j=1,...,n ) ,
а стоимость перевозок из всех пунктов отправления в фиктивный пункт назначения bn+1 будем считать равной нулю. Введением фиктивного пункта назначения B n+1 с его заявкой b n+1 мы сравняли баланс транспортной задачи, и теперь ее можно решать, как обычную транспортную задачу с правильным балансом.
Транспортная задача с избытком заявок.
Эту задачу можно свести к обычной транспортной задаче с правильным балансом, если ввести фиктивный пункт отправления Am+1 с запасом am+1 равным недостающему запасу, и стоимость перевозок из фиктивного пункта отправления во все пункты назначения принять равной нулю.
Задача, двойственная к транспортной.
Построим задачу, двойственную к транспортной. С этой целью вспомним, что каждому пункту отправления и назначения отвечает определенное ограничение
|
В то же время каждому ограничению из (6.1) сопоставляется определенная неизвестная в двойственной задаче. Тем самым устанавливается соответствие между всеми пунктами и и всеми неизвестными двойственной задачи.
Обозначим неизвестную в двойственной задаче, отвечающую пункту отправления , через , а пункту назначения – через .
Каждому неизвестному в транспортной задаче соответствует ограничение, связывающее неизвестные в двойственной задаче. Неизвестное входит ровно в два ограничения системы (6.1): одно из них отвечает пункту , а другое – пункту . В обоих этих уравнениях коэффициент при равен 1. Поэтому соответствующее ограничение в двойственной задаче имеет вид
|
.
Правая часть неравенства (6.2) равна , потому что именно с этим коэффициентом неизвестная входит в минимизируемую формулу (2.4).
Оптимизируемая форма двойственной задачи имеет вид
|
Таким образом, задача двойственная к транспортной формулируется следующим образом. При ограничениях (6.2) максимизировать формулу (6.3). Подчеркнем, что знак значений неизвестных и может быть произвольным.
Предположим, что нам известно некоторое допустимое базисное решение транспортной задачи, в котором все базисные неизвестные строго положительны. Это решение оптимально лишь в том случае, когда соответствующая ей система оказывается совместной. Эта система возникает из системы (6.2), если в ней все неравенства, отвечающие базисным неизвестным заменить точными равенствами.
В итоге приходим к соотношению:
|
Тем самым мы убеждаемся, что признак оптимальности в работе по методу потенциалов совпадает с необходимым и достаточным условием оптимальности.
7.Пример решения транспортной задачи.
В городе N имеется 4 склада Аi, на которых хранится ткань (в рулонах) и 5 магазинов Bj, занимающихся продажей ткани. Ниже, в таблице, приведены данные по количеству рулонов на каждом складе, запросы магазинов и стоимость перевозки одного рулона из Аi в Bj. Необходимо составить такой план перевозок, при котором запросы магазинов будут удовлетворены при минимальной суммарной стоимости перевозок.
Магазины Склад |
B1 (b1=40) |
B2 (b2=50) |
B3 (b3=15) |
B4 (b4=75) |
B5 (b5=40) |
А1 (а1=50) | 1,0 | 2,0 | 3,0 | 2,5 | 3,5 |
А2(а2=20) | 0,4 | 3,0 | 1,0 | 2,0 | 3,0 |
А3(а3=75) | 0,7 | 1,0 | 1,0 | 0,8 | 1,5 |
А4(а4=80) | 1,2 | 2,0 | 2,0 | 1,5 | 2,5 |
В данном случае Σai=225 >Σbj=220 => имеем дело с открытой моделью транспортной задачи. Сведем ее к закрытой введением фиктивного магазина B6 с потребностью b5=225-220=5 и стоимостью перевозок сi6=0.Имеем таблицу:
Магазины Склад |
B1 (b1=40) |
B2 (b2=50) |
B3 (b3=15) |
B4 (b4=75) |
B5 (b5=40) |
B6 (b6=5) |
А1 (а1=50) | 1,0 | 2,0 | 3,0 | 2,5 | 3,5 | 0 |
А2(а2=20) | 0,4 | 3,0 | 1,0 | 2,0 | 3,0 | 0 |
А3(а3=75) | 0,7 | 1,0 | 1,0 | 0,8 | 1,5 | 0 |
А4(а4=80) | 1,2 | 2,0 | 2,0 | 1,5 | 2,5 | 0 |
Математическая модель: обозначим xij – количество товара, перевозимого из Аi в Bj. Тогда
x11 x12 x13 x14 x15 x16
x21 x22 x23 x24 x25 x26
X = x31 x32 x33 x34 x35 x36 - матрица перевозок.
x41 x42 x43 x44 x45 x46
min(x11+2x12+3x13+2,5x14+3,5x15+0,4x21+3x22+x23+2x24+3x25+0,7x31+x32+x33+0,8x34+1,5x35++1,2x41+2x42+2x43+1,5x44+2,5x45) (1)
x11+x12+x13+x14+x15+x16=50
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12