U2=-0,6
|
|
|
|
|
|
|
|
U3=-1
|
|
|
|
|
|
|
|
U4=-0,3
|
|
|
|
|
|
|
|
Стоимость 3-его плана:
D3=1•35+2•15+0,4•5+1•15+0,8•40+1•35+1,5•35+2,5•40=301,5.
Имеем:u1+v6-c16 =0,3>0,u3+v5-c35 =0,3>0. => По критерию оптимальности, третий план не оптимален. Далее max(0,3;0,3)=0,3. => Поместим перевозку в клетку А3В5, сместив 40=min(40,40) по циклу, указанному в таблице штрихом. Получим новую таблицу. Чтобы 4-ый план был невырожденным, оставим в клетке А4В5 нулевую перевозку. Найдем потенциалы: u1+v1=1,u1+v2=2,u2+v1=0,4,u3+v2=1, u4+v5=2,5, u2+v3=1, u4+v4=1,5, u3+v5=1,5 , u4+v6=0. Положим u1=0,тогда v1=1,u2=-0,6,v2=2,v4=1,5, u3=-1,u4=0, v3=1,6, v5=2,5, v6=0. Составим таблицу:
Магазины Склад |
B1 (b1=40) v1=1 |
B2 (b2=50) v2=2 |
B3 (b3=15) v3=1,6 |
B4 (b4=75) v4=1,5 |
B5 (b5=40) v5=2,5 |
B6 (b6=5) v6=0 |
||||||||||||||||||
А1 (а1=50) U1=0 |
1,0 |
2,0 | 3,0 | 2,5 | 3,5 | 0 | ||||||||||||||||||
А2(а2=20) U2=-0,6 |
0,4 | 3,0 | 1,0 | 2,0 | 3,0 | 0 | ||||||||||||||||||
U3=-1 |
|
|
|
|
|
0 | ||||||||||||||||||
U4=0 |
|
|
|
|
|
|
Стоимость 4-ого плана: D4=1•35+2•15+0,4•5+1•15+1•35+1,5•40+1,5•75=289,5.
Для всех клеток последней таблицы выполнены условия оптимальности:
1)ui+vj-сij=0 для клеток, занятых перевозками;
2)ui+vj-сij ≤0 для свободных клеток.
Несодержательные ответы:
Прямой ЗЛП:
35
15 0 0 0 0
5 0 15 0 0 0
X = 0 35 0 0 40 0
0 0 0 75 0 5
min=289,5.
Двойственной ЗЛП:
U1=0 ; U2=-0,6 ; U3=-1 ; U4=0 ; V1=1 ; V2=2 ; V3=1,6 ; V4=1,5 ; V5=2,5 ; V6=0.
max=289,5.
Так как min=max, то по критерию оптимальности найдены оптимальные решения прямой и двойственной ЗЛП. Содержательный ответ: Оптимально перевозить так:
Из А1 в B1 – 35 рулонов полотна;
Из А1 в B2 – 15 рулонов полотна;
Из А2 в B1 – 5 рулонов полотна;
Из А2 в B3 – 15 рулонов полотна;
Из А3 в B2 – 35 рулонов полотна;
Из А3 в B5 – 40 рулонов полотна;
Из А4 в B4 – 75 рулонов полотна.
При этом стоимость минимальна и составит Dmin=289,5. 5 рулонов полотна необходимо оставить на складе А4 для их последующей перевозки в другие магазины.
8.Выводы.
В курсовой работе изложены основные подходы и методы решения транспортной задачи, являющейся одной из наиболее распространенных задач линейного программирования. Решение данной задачи позволяет разработать наиболее рациональные пути и способы транспортирования товаров, устранить чрезмерно дальние, встречные, повторные перевозки. Все это сокращает время продвижения товаров, уменьшает затраты предприятий и фирм, связанные с осуществлением процессов снабжения сырьем, материалами, топливом, оборудованием и т.д.
Алгоритм и методы решения транспортной задачи могут быть использованы при решении некоторых экономических задач, не имеющих ничего общего с транспортировкой груза. В этом случае величины тарифов cij имеют различный смысл в зависимости от конкретной экономической задачи. К таким задачам относятся следующие:
оптимальное закрепление за станками операций по обработке деталей. В них cij является таким экономическим показателем, как производительность. Задача позволяет определить, сколько времени и на какой операции нужно использовать каждый из станков, чтобы обработать максимальное количество деталей. Так как транспортная задача требует нахождения минимума, то значения cij берутся с отрицательным знаком;
оптимальные назначения, или проблема выбора. Имеется m механизмов, которые могут выполнять m различных работ с производительностью cij. Задача позволяет определить, какой механизм и на какую работу надо назначить, чтобы добиться максимальной производительности;
задача о сокращении производства с учетом суммарных расходов на изготовление и транспортировку продукции;
увеличение производительности автомобильного транспорта за счет минимизации порожнего пробега. Уменьшение порожнего пробега сократит количество автомобилей для перевозок, увеличив их производительность;
решение задач с помощью метода запрещения перевозок. Используется в том случае, если груз от некоторого поставщика по каким-то причинам не может быть отправлен одному из потребителей. Данное ограничение можно учесть, присвоив соответствующей клетке достаточно большое значение стоимости, тем самым в эту клетку не будут производиться перевозки.
Таким образом, важность решения данной задачи для экономики несомненна. Приятно осознавать, что у истоков создания теории линейного программирования и решения, в том числе и транспортной задачи, стоял русский ученый – Леонид Витальевич Канторович.
Список литературы
1. Кузнецов А.В., Сакович В.А., Холод Н.И. ”Высшая математика. Математическое программирование ”, Минск, Вышейшая школа, 2001г.
2. Красс М.С., Чупрынов Б.П. ”Основы математики и ее приложения в экономическом образовании”, Издательство “Дело”, Москва 2001г.
3. В.И. Ермаков “Общий курс высшей математики для экономистов”, Москва, Инфра-М, 2000г.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12