RSS    

   Курсовая работа: Градиентный метод первого порядка

P12, P23 - эффекты двойного взаимодействия, а P123 - эффекты тройного взаимодействия. Эффекты взаимодействия определяют аналогично линейным эффектам:

.

7. Проверка однородности дисперсии и значимости коэффициентов регрессии.

Если дополнительно поставить параллельные опыты, можно определить s2воспр - дисперсию воспроизводимости, проверить значимость коэффициентов регрессии, а при наличии степеней свободы – адекватность уравнения.

В связи с тем, что корреляционная матрица (U*U)-1 для спланированного эксперимента есть матрица диагональная

,

коэффициенты уравнения регрессии некоррелированы между собой. Значимость коэффициентов уравнения регрессии можно проверять для каждого коэффициента в отдельности, пользуясь критерием Стьюдента : . Исключение из уравнения регрессии незначимого коэффициента не скажется на значениях остальных коэффициентов. При этом выборочные коэффициенты bj оказываются так называемыми несмешанными оценками для соответствующих генеральных коэффициентов βj:

bj βj, т. е. величины коэффициентов уравнения регрессии характеризуют вклад каждого фактора в величину y.

Диагональные элементы корреляционной матрицы равны между собой, поэтому все коэффициенты уравнений

Y =  и Y = Р0 + Р1U1 + Р2U2 + … + РnUn + … +

+ … +  

oпределяются с одинаковой точностью:

s bj= s2воспр

8. Проверка адекватности уравнения

Проверка адекватности уравнения проводится по критерию Фишера:

Рассчитывается значение

F= s2ост/ s2воспр ; s2ост ,

где m - число значимых коэффициентов в уравнении регрессии.

2.  После проведения полного факторного эксперимента определены коэффициенты регрессии

Тогда частные производные будут пропорциональны .

3.  Делая, с учетом последнего выражения, шаг в сторону, противоположную среднему, определяем новую точку  и опять проводим эксперимент.

4.  Повторяем первые три шага, пока не приблизимся к точке экстремума. При приближении к точке экстремума алгоритм начинает работать плохо при близости к нулю частных производных, то есть линейная модель становится неадекватной и требует введения квадратичных членов.

По условию дано:


, T = 20, U(t) = 15 – 0.1t, .

Уравнение выхода системы:

 

, , .

Значение параметров системы:

 

, .

Характер помехи и ее статистические параметры:

Нормальное распределение

.

Здесь - вектор состояния системы; - вектор наблюдения; - вектор помехи; А, В, С – матрицы коэффициентов (параметров) системы; [0, T] – интервал определения системы.

Необходимо

- составить в соответствии с математическим ожиданием системы ее имитационную модель для формирования реализации вектора и состояния системы на интервале определения;

- составить алгоритм и программу решения задачи построения динамической модели в соответствии с заданным типом модели методом идентификации и точностью решения задачи;

- отладить программу;

- провести расчеты и анализ полученных результатов.

Построение математической модели

Учитывая характер помехи можно составить следующую имитационную модель системы для формирования реализации вектора и состояния системы на интервале определения:

 

,

, ; .

Здесь - вектор состояния системы; - вектор состояния модели;  - матрицы коэффициентов модели.

, T = 20, U(t) = 15 – 0.1t, .

Здесь [0, T] – интервал определения системы.

Уравнение выхода системы:

, , .

Здесь - вектор наблюдения; - вектор помехи; С – матрица коэффициентов (параметров) системы.

Значение параметров системы:


, .

Здесь А, В – матрицы коэффициентов (параметров) системы.

Характер помехи и ее статистические параметры:

Помеха имеет нормальное распределение с математическим ожиданием, равным .

Алгоритм реализации решения задачи построения динамической модели

Идея построения требуемой динамической системы состоит в следующем: для заданного значения параметра t с его интервала определения градиентным методом первого порядка находим соответствующее значение параметра x, который изменяется динамически. Поэтому необходимо в каждый момент ti найти оптимальное соответствующее значение фактора х и функции отклика у, которые наиболее близко описывали бы исходную систему. Помеха имеет нормальное распределение, поэтому включаем ее в функцию отклика таким образом, как показано в выше предложенных формулах.

Для поиска решения необходимо рассчитать оптимальный шаг .

Это делается по выше указанной формуле ( 6 ) – поиск шага варьирования. Именно так и реализуем в программном решении данной задачи.

Для поиска оптимального решения используем матрицы коэффициентов модели , с помощью которых определяем соответствующее значение функции отклика. Все выше сказанное реализовано в предлагаемой программе, в которой реализовано решение задачи построения динамической модели в соответствии с заданным типом модели методом идентификации и точностью решения задачи. Программа отлажена на упрощенных тестовых примерах с использованием информации, полученной от имитационной тестовой модели.

Проведен анализ полученных результатов, что также отражено в предложенной программе.

 

Апробирование машинной программы

Как было отмечено ранее, в данной программе кроме ручного ввода исходных значений факторов Х (т. е. задание так называемой «нулевой точки») существует задание количества факторов и количества опытов, как по умолчанию, так и непосредственно пользователем.

Программа исследований программного эксперимента:

Решает задачу оптимизации поверхности отклика. В начале работы требуется задать значения функции отклика Y, для которых и будет найдены соответствующие значения факторов X, при которых функция отклика принимает максимальное значение.

Описание: image2

1.Задаем количество факторов и экспериментов


Получаем значения факторов в натуральном масштабе, заполняем матрицу планирования.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.