Курсовая работа: Градиентный метод первого порядка
Предложенный план эксперимента обладает следующими свойствами:
Свойство симметричности.
;
Свойство нормировки.
;
Свойство ортогональности.
, ( lj , l,i = 1…k );
Следует отметить, что ортогональные планы полный факторный эксперимент ( для линейных моделей ) обладают также рототабельностью. Последнее предполагает равенство и минимальность дисперсий предсказанных значений выходной переменной для всех точек факторного пространства. По закону накопления ошибок для дисперсии предсказанных уравнением регрессии значений выходной переменной можно записать:
s2y= s2b0 + s2b1U12 + … + s2bnUn2
Дисперсии коэффициентов регрессии равны между собою, поэтому
s2y = s2bi
С учетом того, что
,
Где - радиус сферы имеем
s2y = s2 bi.
Отсюда ясно, что дисперсия предсказанного значения выходной переменной зависит только от радиуса сферы. Это свойство рототабельности эквивалентно независимости дисперсии выходной переменной от вращения координат в центре плана и оправдано при поиске оптимума градиентными методами. Интуитивно понятно, что исследователю удобно иметь дело с такой информацией, содержащейся в уравнении регрессии, которая равномерно «размазана» по сфере радиусом . Действительно такое положение можно признать разумным, ибо с помощью уравнения регрессии будут предприниматься попытки предсказать положение ещё неизвестных участков факторного пространства. Равноценность этих участков в смысле ошибки предсказания, по-видимому, является необходимой.
Свойство ортогональности существенно облегчает процесс вычисления коэффициентов, так как корреляционная матрица (UТU)-1 становится диагональной, и коэффициенты будут равны 1/N;
6. С учетом свойства ортогональности можно вычислить вектор В коэффициентов регрессии:
Следовательно, любой коэффициент уравнения регрессии bj определяется скалярным произведением столбца Y на соответствующий столбец Uj, деленным на число опытов N в матрице планирования:
Вычислим коэффициенты регрессии линейного уравнения :
Если в рассмотрение ввести более полное уравнение регрессии с коэффициентами взаимодействия Р, то используя процедуру метода наименьших квадратов , получим:
.
Пользуясь планом, представленным в табл. 1.2, можно перечислить коэффициенты регрессии и записать в табл.1.4:
Y = Р0 + Р1U1 + Р2U2 + … + РnUn + … +
+…+ P13U1U3 + P23U2U3 + … + P123U1U2U3…
Таблица 1.4
Номер опыта |
U0 |
U1 |
U2 |
… |
Un |
… | … | У | |||
1 | +1 | +1 | +1 | … | +1 |
… |
-1 | +1 | +1 |
… |
У1 |
2 | +1 | -1 | +1 | … | +1 |
… |
-1 | -1 | +1 |
… |
У2 |
… | … | … | … | … | … | … | … | … | … | … | … |
N | +1 | -1 | -1 | … | -1 |
… |
-1 | +1 | +1 |
… |
УN |
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14