RSS    

   Дипломная работа: Спиральные антенны

Второе условие получения диапазонной антенны—постоянство входного сопротивления — достигается здесь тем, что спираль работает в режиме бегущей волны тока. Это сопротивление активное (100—200 Ом). При питании от коаксиального фидера ( Ом) согласование производят ступенчатым или плавным трансформатором.

Спираль излучает по обе стороны своей оси. Чтобы сделать антенну однонаправленной, ленточную спираль помещают на диэлектрической пластине толщиной , другую сторону которой металлизируют. Если же спираль щелевая, то ее вырезают на стенке металлического короба; тогда противоположная стенка короба играет роль отражающего экрана, а сам короб является резонатором. Чтобы уменьшить его глубину, короб заполняют диэлектриком.

Одна из типовых спиралей имеет диаметр 76 мм, выполнена на пластине из эпоксидного диэлектрика, снабжена резонатором глубиной 26 мм, работает в диапазоне волн  7.5 ... 15 см при , ширине диаграммы направленности 2' = 60... 80° и коэффициенте эллиптичности в направлении максимума главного лепестка менее 3 дБ, т. е. практически поляризацию можно считать круговой. Плоские спиральные антенны удобно изготовлять печатным способом на тонких листах диэлектрика с малыми потерями на высоких частотах.

1.3 Равноугольная (логарифмическая) спиральная антенна

Широкодиапазонность антенн такого вида основана на том, что если отношение линейных размеров излучателя к длине волны остается постоянным и излучающая структура полностью определяется ее полярными углами, то направленность антенны оказывается абсолютно независимой от частоты.

Рис.1.3.1. Логарифмическая спираль

Равноугольная спираль (рис. 1.3.1) строится в полярных координатах по уравнению


 (1.3.1)

где  — радиус-вектор в начале спирали (); а — коэффициент, определяющий степень увеличения радиус-вектора с увеличением полярного угла .

Двухзаходная спираль образуется двумя проводниками или щелями, но в отличие от архимедовой спиральной антенны толщина их непостоянна и возрастает с увеличением угла . Пусть начальный радиус-вектор на внутренней границе 1-го проводника равен  и на внешней. Тогда уравнениями граничных спиралей являются

(1.3.2)

 . (1.3.3)

Для оценки диапазонности логарифмической спирали исследуем зависимость отношения  от угла . Числитель дроби ,а так как ,

то знаменатель дроби и искомое отношение ,(1.3.4)

где . Следовательно, изменение длины волны вызывает только смещение активной области спирали на некоторый угол , а отношение  и направленное действие антенны от этого не меняются. Если бы спираль была бесконечной, то диапазонность антенны была безграничной, но реальная антенна имеет конечную

длину и эффективно работает в ограниченном, хотя и очень широком диапазоне волн ,причем  определяется максимальной длиной спирали, а  — минимальными размерами узла питания.

4.3. Логарифмическая спираль работает в режиме бегущих волн (вследствие излучения ток затухает к концу спирали), и ее входное сопротивление  Ом.

Рис.1.3.2. Щелевая плоская логарифмическая спиральная антенна

Типовая щелевая логарифмическая спираль (рис. 6) имеет максимальную длину ветви 42,3 см, начальный радиус 0,51 см и коэффициент  = 0,303. Антенна излучает волны с вращающейся поляризацией в диапазоне  см и  не превышает двух при питании спирали от 50-Ом коаксиального кабеля. Параметры антенны находятся в допустимых пределах даже при двадцатикратном изменении длины волны.


1.4 Коническая спиральная антенна

Коническая спиральная антенна (рис.1.4.1) состоит из двух металлических полосок, расположенных на поверхности конуса θ=θ0, конфигурация которых дается уравнением

θ=1800

θ=0

Рис.1.4.1 Коническая спиральная антенна

Угол  между радиусом и касательной к спирали равен arctg а. Таким образом, плоская спираль есть частный случай конической при θ = 900.

В случае конуса можно говорить о самодополнительной структуре, имея в виду идентичность участков поверхности конуса, покрытых полоской и свободных от нее. Положение тех и других отличается на угол поворота 900; иначе говоря, ширина ветви δ на рис.1 равна 900. Оказывается, что самодополнительная структура обеспечивает наилучшую диаграмму направленности. Переход к конической форме позволяет выявить одну важную особенность спиральных антенн, которая не могла быть обнаружена при плоской форме спирали: излучение происходит за счет волны, перемещающейся внутрь по направлению к внешней спирали.


Глава 2. Свойства спиральных антенн

2.1 Спиральные антенны и виды волн в них

Спиральные антенны являются слабо - и средненаправленными широкополосными антеннами эллиптической и управляемой поляризации. Они применяются в качестве самостоятельных антенн, облучателей зеркальных и линзовых антенн, возбудителей волноводно-рупорпых антенн эллиптической и управляемой поляризации, элементов антенных решеток.

Спиральные антенны --это антенны поверхностных волн. По виду спирали ''направителя" (замедляющей системы) и способу обеспечения работы в широком диапазоне частот их можно разделить на:

---цилиндрические регулярные, у которых геометрические параметры (шаг, радиус, диаметр провода) постоянны по всей длине и широкополосность обусловлена наличием дисперсии фазовой скорости;

--эквиугольные или частотно-независимые (конические, плоские);

--нерегулярные, у которых параметры есть функции координаты вдоль длинны спирали.

Спиральная антенна --- это антенна бегущей волы. Волна тока, распространяясь от места возбуждения вдоль провода спирали, доходит до его свободного конца и отражается в обратном направлении. Подбором геометрии спирали и частоты питающего напряжения можно добиться быстрого спада как падающей, так и отраженной волн тока (рис2.1.1

Рис. 2.1.1


Эти волны интерферируют друг с другом. Так как на большей части провода спирали амплитуда падающей волны значительно превосходит амплитуду волны отраженной, то в результате интерференции распределение амплитуды тока вдоль спирали будет примерно таким, как показано на рис 2.1.2

Рис 2.1.2

В этом случае на большей части провода спирали амплитуда тока будет почти постоянной, а фаза будет изменяться почти по линейному закону т.е. мы можем считать, что на большей части провода спирали имеет место бегущая волна тока. Отсутствие заметной отраженной волны тока в некотором интервале частот обеспечивает достаточно хорошее постоянство входного сопротивления и характеристик направленности в этом интервале.

Но указанными свойствами спиральная антенна обладает только при определенных условиях.

Распространяющаяся вдоль провода спирали бегущая волна тока не может вызвать внутри спирали электромагнитных волн типа H или E, так как это имеет место в волноводе со сплошными проводящими стенками. Благодаря более сложным анизотропным граничным условиям на образующей поверхности спирали указанная волна тока возбуждает внутри спирали электромагнитные волны более сложной структуры. Эти волны принято обозначать символом- Tn где n—число длин волн тока, укладывающихся на окружности витка цилиндра, поверхность которого является образующей спирали.

Характеристики направленности спиральной антенны существенным образом зависят от возбужденного в спирали типа волны.

Это можно наглядно показать, рассмотрев работу спирали с малым углом намотки. Если в спирали имеет место волна T0, то можно считать, что на протяжении одного витка спирали амплитуда, и фаза тока изменяются столь незначительно, что их можно считать постоянными. Поля, созданные на оси спирали симметричными элементами витка, как это видно на рис.1.3, взаимно компенсируют друг друга. Излучение вдоль оси спирали отсутствует. Основной составляющей поля в этом случае является, осевая составляющая.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.