Реферат: Характеристика систем складирования и размещения запасов
Все погрузочно-разгрузочные машины делятся на машины периодического (циклического) действия (краны, тельферы, погрузчики), машины, перемещающие грузы отдельными подъемами или штуками через определенный интервал времени, и машины непрерывного действия (конвейеры, элеваторы, пневматические машины), перемещающие груз непрерывным или почти непрерывным потоком. С характеристиками этого оборудования следует знакомиться по справочникам подъемно-транспортных машин [8].
В логистической системе важно определить необходимое количество подъемно-транспортных машин для обслуживания складского комплекса. Поэтому ниже приведем расчет потребности подъемно-транспортного оборудования для складской переработки гоуза.
Количество подъемно-транспортного оборудования А рассчитываем по формуле:
, (8.8)
где Q – количество перерабатываемого груза, т; Кн – коэффициент неравномерности поступления груза; Р – производительность оборудования, т.
В числителе величины известные, а вот производительность машин и механизмов необходимо рассчитать.
Производительность крана Рк зависит от веса подъема груза q0 и числа циклов машины за 1 ч непрерывной работы nц:
Рк = q0 * nц. (8.9)
Количество циклов работы машины за 1 ч (3600 сек) зависит от продолжительности одного цикла ее работы Тц и выражается в секундах:
, (8.10)
Время цикла работы крана 7ц складывается из времени, необходимого для производства отдельных элементов цикла, с учетом одновременного выполнения (совмещения) некоторых из них:
, (8.11)
где Кс – коэффициент, учитывающий сокращение времени цикла при совмещении нескольких операций; n – число элементов цикла работы крана; t – время, затраченное на выполнение отдельных элементов цикла, сек.
Часовая производительность погрузчика Рп определяется по общей формуле для машин периодического действия
(т/ч). (8.12)
Общая часовая производительность машин непрерывного действия определяется следующим образом:
Рк = 3,6 * q * V (т/ч), (8.13)
где q – вес груза на одном погонном метре несущего элемента машины, кг; V – скорость грузонесущего элемента машины, м/сек.
Существуют особенности расчета часовой производительности перегрузочных машин различных типов.
Часовая производительность любого типа конвейера при перегрузке 1 места весом q кг на расстояние a м со скоростью v м/сек:
Pk = 3,6 * q * V / a (т/ч), (8.14)
а число перемещаемых грузовых мест в час:
.
При перемещении наволочных и насыпных грузов непрерывным потоком часовая производительность конвейера определяется по формуле:
Рk = 3600 * F * v * (т/ч), (8.15)
или
Pk = V * К * B2 * * (т/ч), (8.16)
где F – площадь поперечного сечения слоя груза, перемещаемого на ленте, м2; V – скорость движения ленты, м/сек; – насыпной вес груза, т/м3; k – коэффициент, зависящий от угла естественного откоса груза (в движении); В – ширина ленты конвейера, м; – коэффициент заполнения ленты.
Часовая производительность ковшовых элеваторов определяется по формуле:
Рэ = 3,6 * l * * * V / a (т/ч), (8.17)
где l – емкость ковша, м3; а – расстояние между ковшами, м; V – скорость движения ковшей, м/сек; – коэффициент заполнения ковшей; – насыпной вес груза, т/м3.
Часовая производительность машин пневматического транспорта определяется по формуле:
Рп = 3,6 * * VВ * КВ (т/ч), (8.18)
где – плотность атмосферного воздуха (принимается 1,2 кг/м3); VВ – расход воздуха, м/сек; КВ – весовая концентрация смеси (отношение веса перемещаемого груза к весу расходуемого воздуха в единицу времени).
Список литературы
Для подготовки данной работы были использованы материалы с сайта http://www.cfin.ru/
Организация транспортно-складского материалопотока
Одним из направлений эффективной организации транспортно-складского материалопотока является внедрение логистической системы в практику погрузочно-разгрузочных работ. Эта система позволяет использовать передовую технологию и эффективные технические средства, что создает условия рационального использования транспортных средств, грузовых ресурсов и перегрузочного оборудования. Эффективное использование транспортных средств, погрузочно-разгрузочных механизмов и трудовых ресурсов достигается путем разработки технологического процесса с учетом достигнутой выработки переработки груза передовыми бригадами, эффективных способов заготовки пакетов и укладки груза; технических характеристик средств малой механизации, дальности перевозок и т.д. Разработка технологического процесса производится на основе технологической карты. Основные показатели и их расчет показаны в табл. 3.
Таблица 3
№п/п | Показатель | Расчет показателя | Примечание |
1 | Расчетное (оперативное) время | Квр – коэффициент, учитывающий подготовительно-заключительное время и время на отдых Квр = 100% |
В расчетах можно применять: 1) для механизированных операций – 5%; 2) для технологических процессов: а) с однородным грузом – 15% б) со сборным грузом – 20% |
2 | Вес одного подъема | y0 | Необходимо обосновать с учетом типа, количества и размера захватных устройств и такелажа |
3 | Количество циклов |
|
Рв – норма выработки в смену, т |
4 | Продолжительность одного цикла машины или механизма |
|
Время одного цикла может быть установлено путем хронометража |
5 | Возможность механизации складских работ; типы средств малой механизации | Путем анализа погрузочно-разгрузочных операций | |
6 | Производительность машин или механизмов | Рm = Нц * y0 | Для машин периодического действия |
7 | Количество средств механизации |
|
Qсут – суточный грузооборот, т |
8 | Количество транспортных складских рабочих и грузчиков |
|
Т1 – время укладки(установки) одного груза |
9 | Расстановка транспортно-складских рабочих и определение их выработки |
|
|
После определения основных показателей составляют технологическую карту, на которую наносят необходимые схемы, записывают расчетные данные, а также соответствующие указания по производству работ и технике безопасности.
Пример. Определим численность комплексной бригады транспортно-складских рабочих для погрузки 302 т груза по технологической схеме: склад – погрузчик – автомобиль.
Для решения этой задачи могут быть использованы математические методы теории массового обслуживания. Теория массового обслуживания, опираясь в основном на теорию вероятностей, позволяет найти оптимальное решение, при котором оптимальная численность рабочих и грузчиков сводит до минимума суммарные убытки, вызванные простоем автомобилей в ожидании грузчиков и простоев грузчиков в ожидании автомобилей.
Однако чтобы воспользоваться одной из типовых задач, представленных в теории массового обслуживания, следует тщательно изучить поток требований, поступающих в обслуживающую систему, и описать его количественно.
Задачи, решаемые математическим аппаратом теории массового обслуживания, имеют вполне определенную структуру. Эта структура характеризуется последовательностью событий обслуживающей системы и обслуживающими аппаратами.
Последовательность событий определяется потоком требований, поступающих в обслуживающую систему. Здесь требование – необходимость обработки каждого автомобиля, прибывающего на предприятие. В понятие обработки каждого автомобиля включаются грузовые и все вспомогательные операции, связанные с полным обслуживанием автомобилей с момента прибытия его на предприятие и до момента его отправления.
Поток требований автомобилей, нуждающихся в обработке, и поступающий в обслуживающую систему предприятия, называется входящим потоком.
Обслуживающая система состоит из обслуживающих устройств – аппаратов, в данном случае пунктов погрузки, оборудованных перегрузочными средствами и укомплектованных необходимыми составами бригад грузчиков.