RSS    

   Реферат: Электропроводность электролитов

Числа переноса остаются практически постоянными до тех пор, пока концентрация сильного электролита не превышает 0,2 моль/л; при даль­нейшем увеличении концентрации наблюдается их изменение. Например, для водного раствора NaCI при 291 К и с = 0,005 моль/л число переноса иона натрия t+ равно 0,396, а при с= 1,0 моль/л t+= 0,369; в соответствии с уравне­нием (40) числа переноса иона хлора при этом равны 0,604 и 0,631.

С ростом температуры абсолютные скорости ионов и подвижности ионов увеличиваются, но не в одинаковой мере. Поэтому числа переноса с изменени­ем температуры также меняются. При этом если число переноса катиона увеличивается, то согласно соотношению (40) число переноса аниона уменьшается, и наоборот.

Для сильных электролитов значение  Λ∞ определяется обычно линейной экстраполяцией опытных кривых, вычерченных в координатах Λ-до значений с=0. Для слабых электролитов значения Λ∞ , вычисленные непосред­ственно по опытным данным, получаются неточными, так как в разбавленных растворах молярная электрическая прово­димость слабых электролитов меняется очень резко. Поэтому значения Л я, растворов слабых электролитов рассчитываются обычно по значениям  Λ∞+   и Λ∞- , найденным по опытным данным электрической проводи­мости растворов сильных электролитов.

5. Закон разбавления Оствальда.

При диссоциации слабого электролита устанавливается равно­весие между недиссоциированными молекулами и ионами. Рас­смотрим простейший пример, когда молекула распадается только на два иона:

СН3СООН + Н2О = СН3СОО- + Н3O+         (52)

На основании закона действия масс имеем

                        (53)

Как всякая константа равновесия, Кa зависит от температуры. Активность растворителя (в данном случае — воды) в разбав­ленных растворах можно считать постоянной. Это позволяет пере­нести aH2O в уравнении (53) в левую часть. Обозначим про­изведение KaaH2O через Kд, CH3COOH. Тогда

                (54)

Величина Kд называется термодинамической константой дис­социации или сокращенно константой диссоциации.

Вода—тоже электролит, но не сильный, так как слабо диссоциирует на ионы; одновременно она является и растворителем. В связи с этим реакция диссоциации идет по уравнению

H2O + H2O = H3O+ + OH-

На основании закона действия масс имеем

                             (55)

Поскольку концентрация образующихся ионов ОН- и H3O+ очень невелика, активность недиссоциированных молекул воды можно считать не зависящей от степени диссоциации. Перенесем aH2O в левую часть и обозначим произведение KaaH2O через Kд, H2O. Тогда

                    (56)

Величина Kд, H2O представляет собой термодинамическую кон­станту диссоциации воды, а произведение Kд,H2OaH2O обозначается через Kw, и называется ионным произведением воды:

Kw = aH2OaOH-

Термодинамическая константа диссоциации и ионное произве­дение воды зависят от температуры. Обычно изменение константы диссоциации с повышением температуры невелико, например для кислот, с повышением температуры от 0 до 20 °С константа диссоциации изменяется всего на 3—8%. Ионное произведение воды в этом же интервале температур воз­растает более чем в 6 раз.

Значения термодинамических кон­стант диссоциации слабых кислот, растворенных в воде, проходят через максимум, который для приведенных в таблице кислот ле­жит в интервале между 0 и 60 °С. Это можно объяснить влиянием двух противоположно направленных воздействий. С одной сторо­ны, всякая диссоциация протекает с поглощением тепла, и, следо­вательно, при повышении температуры равновесие должно сме­щаться в сторону большей степени диссоциации. С другой сторо­ны, при повышении температуры диэлектрическая проницаемость воды, служащей растворителем, уменьшается, а это способствует воссоединению ионов. Максимального значения константа диссо­циации достигает при той температуре, при которой влияние вто­рого фактора начинает преобладать,

Ионное произведение воды с повышением температуры непре­рывно возрастает.

Заменив активности произведениями аналитических концентра­ции на соответствующие коэффициенты активности, получим, на­пример, пользуясь моляльностью

      (57)

Обозначим

        (58)

Тогда

          (59)

Совершенно так же можно выразить термодинамическую кон­станту диссоциации через молярность с и соответствующие коэф­фициенты активности f. Обозначив

           (60)

получим

               (61)

Выразим общую концентрацию электролита в моль/л через с (молярность), степень диссоциации обозначим через α. Тогда

[СН3СОO-] = сα; [Н3O+] = сα; [СН3СОOH] = с (1 - α)

 Уравнение для kc принимает вид

                              (62)

Последнее равенство является простейшей формой закона раз­ведения, сформулированного Оствальдом в 1888 г. Очевидно, что чем больше kc, тем выше степень диссоциации. Таким образом, величина kc может служить мерой силы кислоты, т. е. мерой кис­лотности. Для умеренно слабых электролитов, например Н3РO4 (первая ступень), Са(ОН)2, СНСl2СООН, значения kc лежат в пределах от 10-2 до 10-4. Для слабых электролитов, например СН3СОOH, NH4OH, kc = 10-5 — 10-9. При kc<10-10 электролит считается очень слабым. Такими электролитами являются H2O, C6H5OH, HCN.

Если степень диссоциации очень мала, то величиной α можно пренебречь по сравнению с единицей, и формула (46) при­мет вид

kc  = cα2   или    α                           (63)

т. е. степень диссоциации обратно пропорциональна корню квад­ратному из концентрации электролита.

Если электролит распадается больше чем на два иона, то за­висимость kc от степени диссоциации соответственно усложняется. Например, при диссоциации CaCl2 имеем

[Ca2+] = cα; [Cl-] = 2cα и [СаС12] = с (1 - α)

откуда

                (64)

Соответственно при малой степени диссоциации

Можно отметить, что для электролитов, распадающихся на два иона, значение kc равно четверти концентрации, при которой α = 1/2.

В разбавленных растворах значения подвижностей U и V не­значительно отличаются от предельных значений подвижностей (U ≈ U0  и V ≈ V0), поэтому, разделив выражение (47) на уравнение (48), получим уравнение

                               (65)

Подставив выражение (49) в формулу (46), полу­чим

              (66)

Величина kc является постоянной только для очень разбавлен­ных растворов, коэффициенты активности которых можно считать равными единице. Вообще же kc величина переменная. Некото­рые авторы называют kc классической константой диссоциации, но правильнее её называть классической функцией диссоциации или просто функцией диссоциации.

Если ионная сила раствора достаточно мала, то коэффициент активности недиссоциированной уксусной кислоты fCH3COOH близок к единице и уравнение (60) примет вид:

Kд, CH3COOH = kcfCH3COO- fH3O+                       (67)

Величина Kд, CH3COOH в уравнениях (51) и (44), т.е. термодинамическая константа диссоциации, не зависит от  концентрации.

6. Электрофоретический и релаксационный эффекты в электролитах, их влияние на электрическую проводимость.

Теория электролитической диссоциации Аррениуса не учиты­вала влияния концентрации на подвижность ионов, хотя, как вы­яснилось, влияние концентрации на подвижность может быть весьма существенным. Уменьшение эквивалентной электропровод­ности с концентрацией Аррениус объяснял не уменьшением по­движности ионов, а уменьшением степени диссоциации.

Как уже было сказано, Кольрауш вывел эмпирическое урав­нение, связывающее эквивалентную электропроводность сильных электролитов с концентрацией:

λ = λ∞ - А

Так как λ∞ = U + V  и λ = U + V , то следовательно,

U = U  - В1 и  V = V  - В2            

где В1 + В2 = А.

Дебай и Хюккель объясняли уменьшение подвижности ионов и эквивалентной электропроводности λ сильных электролитов с увеличением концентрации наличием ионной атмосферы. Дей­ствительно, каждый ион окружен ионной атмосферой, состоящей преимущественно из ионов противоположного центральному иону знака, плотность которой увеличивается с повышением концентра­ции электролита.

При наложении электрического поля ион начинает двигаться в одну сторону, а ионная атмосфера — в противоположную. Дви­жение ионов разных зарядов, при этом сольватированных, в про­тивоположных направлениях создает как бы дополнительное тре­ние, которое и уменьшает абсолютную скорость движения ионов. Этот эффект торможения носит название электрофоретического эффекта. По мере увеличения концентрации плотность ионной ат­мосферы увеличивается, следовательно, увеличивается и тормо­зящий электрофоретический эффект.

Не следует думать, что при беспорядочном движении иона его ионная атмосфера движется вместе с ним как одно целое. При движении ион покидает свою ионную атмосферу и непрерывно на пути своего движения создает новую. Этот процесс разрушения старой и образования новой ионной атмосферы протекает хотя и быстро, но не мгновенно, вследствие чего при движении иона на­рушается симметричность ионной атмосферы, причем плотность ее больше позади движущегося иона. Очевидно, появление асим­метрии ионной атмосферы также вызывает некоторое торможение поступательного движения иона, которое получило название эф­фекта асимметрии или релаксации. Таким образом, из-за наличия ионной атмосферы при движении иона возникают два тормозя­щих эффекта: электрофоретический, обусловленный движением ионной атмосферы в сторону, противоположную направлению дви­жения иона, и эффект релаксации обусловленный асимметрией ионной атмосферы.

Страницы: 1, 2, 3, 4, 5, 6


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.