Реферат: Научный креационизм (Теория сотворения). Обновленная и улучшенная версия
Итак, доказано научно, что вероятность появления жизни настолько ничтожна (при предположениях эволюционистов (неодарвинистов)), что без какого-то информативного корректирующего (творящего) источника даже самая маленькая самовоспроизводящаяся клеточка произойти не могла. Это явно говорит о несостоятельности позиции, которую отстаивают многие эволюционисты.
«Ничтожно мала возможность того, что при обычных температурах гигантское количество молекул расположилось так, чтобы дать начало высокоорганизованным структурам и взаимосогласованным функциям, характерным для живых организмов. Поэтому идея самопроизвольного зарождения жизни в ее нынешнем виде — в высшей степени неубедительна...» - И. Пригожин (Prigogine Ilya, Gregori Nicolis, Agnes Babloyants. Thermodynamics of Evolution. «Physics Today», v. 25, November, 1972, p. 23).
И ещё для полноты осознания невозможности самозарождения жизни, представляю часть из книги “Творение или эволюция”, Т. Хайнц:
Проблемы экспериментов по созданию жизни
Обсуждая эксперименты, связанные с происхождением жизни, Д. Гиш делает следующее важное наблюдение: "Одно важное соображение, которое часто пропускают или игнорируют в рассуждениях о происхождении жизни заключается в том, что те же самые энергетические источники, которые обеспечивают формирование органических соединений, с таким же успехом вызывают разрушение этих соединений. В самом деле, одна из характерных черт всех экспериментов, связанных с исследованием происхождения жизни - это немедленное удаление полученных продуктов реакции от источника энергии с тем, чтобы предотвратить их разложение. Например, аппарат, использованный Миллером в его классическом эксперименте по образованию некоторых аминокислот и других простейших органических соединений с помощью беззвучного электрического разряда в смеси метана, водорода и воды, включая также холодную камеру-уловитель для немедленной изоляции только что образовавшихся продуктов реакции. Изучение аппаратов, использовавшихся другими исследователями в их опытах по происхождению жизни, показывает, что наличие такой камеры-уловителя является общей чертой всех этих аппаратов.
Тенденция химиков-органиков к отделению продуктов реакций от источников энергии, используемых для их синтеза, прежде, чем может произойти заметное разрушение этих продуктов, вполне объяснимо.
Однако, у этой первоначальной, примитивной Земли не было своих химиков-органиков, способных совершить это отделение и, таким образом, продукты, однажды образовавшиеся, подверглись бы разрушительному действию электрических разрядов, высокой температуры или ультрафиолетовых лучей, породивших этот синтез".
|
Предположив, однако, что чудо произошло, и что желание эволюциониста сбылось, что в наличии имелось достаточное количество каждого элемента и нужные структуры создавались и не распадались, а в конце концов сумели превратить океаны в "органический суп", о котором говорят эволюционисты, дало ли бы это удовлетворительную концентрацию материалов, необходимых для возникновения жизни? Давайте разберем статистические шансы для появления только одного определенного протеина.
Из аминокислотного ряда протеина, содержащего только 12 различных видов аминокислот с молекулярным весом равным 34 000 (в грубом приближении около 340 аминокислот в молекуле относительно простого протеина) можно было бы составить 10300 различных группировок! Другими словами, на первобытной Земле могли были бы родиться 10300 различных молекул протеинов с молекулярным весом 34 000, составленные из всех тех же 12 аминокислот. Если бы мы имели, хотя бы по одной молекуле каждого вида, их общий вес составил бы примерно 10280 граммов, тогда как общий вес Земли составляет лишь 1027 граммов. Если бы вся Вселенная была твердым телом, состоящим из протеинов подобного рода, то и там нам не удалось бы разместить все возможные виды молекул, даже по одному экземпляру из каждого вида".
Если бы нужное сочетание органических компонентов, носящихся в морях в нерастворенном виде, случайно соединилось на какое-то мгновение, им потребовалось бы нечто, способное удержать их вместе, в противном случае, море, которое соединило их, разъединит их опять. Таким образом, в какой-то точке на этом пути должны были бы возникнуть локализированные клеткообразные объекты.
К сожалению, сложные соединения, которые, как полагали, имели некоторые свойства клеток, что могло позволить им развиться в клетки, лишены настоящей оболочки и, в результате этого, легко разрушаются. Вместо того, чтобы с годами эволюционировать, они бы распались, а их составные части снова бы затерялись в океане.
В комментариях по поводу уникальности внешней оболочки Дж. Ратклиф дает клетке сказать за себя: "Наша внешняя оболочка столь же замечательна, как и наша внутренняя структура. Моя оболочка представляет собой тончайшую стенку толщиной 0.0000001 мм. До недавних времен ученые рассматривали это тончайшее покрытие, как нечто немного более сложное, чем крошечный целлофановый пакет. Благодаря электронному микроскопу, сейчас они поняли, что это - один из моих важнейших компонентов. Действуя как привратник, клеточная мембрана решает, что впустить, а что не допускать. Она обеспечивает для внутренней части клетки, взаимодействующей с окружающей средой, точный баланс солей, органических материалов, воды и др. компонентов. Жизнь находимся в абсолютной зависимости от нее. Какие исходные материалы нужны для производства протеина? Оболочка пропускает именно те, которые необходимы, не допуская посторонних. Ясно, что она обеспечена хорошо развитой системой распознавания".
|
"В огромном большинстве процессов, интересующих нас, момент равновесия сдвинут далеко в сторону распада. Этот так называемый спонтанный распад гораздо более вероятен и потому протекает много быстрее, чем спонтанный синтез. Например, спонтанное образование по стадиям аминокислотных группировок, способных в дальнейшем сформировать протеин, является процессом с определенной небольшой степенью вероятности и поэтому такой процесс возможен только при достаточно большом промежутке времени. Распад же протеина или промежуточного продукта на компоненты аминокислот гораздо более вероятен и, таким образом, протекает значительно быстрее. Ситуация, с которой нам приходится встречаться, напоминает Пенелопу, ожидающую Одиссея, и даже хуже того: Пенелопа каждую ночь распускала то, что было связано за предыдущий день, у нас же одна ночь может уничтожить работу года, а то и столетия".
Уолд продолжает: "Я считаю эту проблему наиболее трудной из всех встающих перед нами проблем, самым слабым звеном в нашей аргументации на сегодняшний день".
Встреча таких сложных молекул происходит не так часто и не так просто. Мы уже упоминали, что современная наука может синтезировать только небольшое число простейших из них. Это положение ясно указывает на необоснованность аргументов тех, кто считает, что в природе могут существовать какие-то комбинации, которые неизбежно ведут к формированию подобных молекул. Например, подобные сложные субстанции получаются только при обязательном участии особых катализаторов, делающих эти реакции возможными (ферменты).
Эти реакции не могут протекать изолированно. Каждая из них должна начинаться в определенной последовательности и прекращаться после получения должного количества специфических протеинов и т. п., которые надо было получить. Если эта реакция будет продолжаться бесконтрольно, она приведет к израсходованию всех материалов, подобно тому, как лесной пожар уничтожит лес, который предназначался не только для топлива, но также и для производства многих лесоматериалов.
Даже контролируемое производство протеина не даст нужного результата, если этот процесс происходил в клетке, не запрограммированной для его использования или даже в такой клетке, которая оказалась сделанной не в том порядке или не в том месте. Таким образом, здесь имеет место полное отсутствие какого бы то ни было удовлетворительного объяснения того факта, как эволюция сумела выработать разумную программу с тем, чтобы организовывать и контролировать необходимые химические реакции.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25