Реферат: Драконы мезозоя - взлет и падение
Так что же, инерциальная гомойотермия - это все преимущества рептилийного обмена плюс все преимущества маммального обмена (“ест мало, как ящерица, а бегает быстро, как мыть”), и никаких недостатков? Увы, так не бывает. Дело в том, что этот тип обмена веществ возможен, во-первых, лишь у очень крупных животных (собственно говоря, гигантизм динозавров — штука вынужденная, это лишь средство поддержания инерциальной гомойотермии) и, во-вторых, в строго определенном климатическом режиме. Для его поддержания необходим очень ровный и теплый климат, практически без перепада температур (как сезонного, так и суточного): понятно, что если существуют периоды сколько-нибудь существенного охлаждения, то тепловая инерция тут же начинает работать против вас. Климат этот должен быть теплым, но не чрезмерно жарким: при такой физиологии обеспечивать теплосброс чрезвычайно трудно, и в нынешнем тропическом климате можно с легкостью помереть от теплового удара (известно, какие проблемы создает теплосброс для крупных млекопитающих вроде слонов). Именно такой ровный теплый климат (“вся Земля — сплошные субтропики”) и царил на протяжении всего мезозоя. Однако - увы! — вечно такое благоденствие продолжаться не может...
Здесь возникает и еще одна важная проблема: связь теплокровности с фитофагией (растительноядностью). Обычно полагают, что хищник по сравнению с фитофагом всегда будет существом более высокоорганизованным — и мозгов у него побольше, и обмен поинтенсивнее... Так - да не совсем. Дело в том, что усваивать мясо — “не просто, а очень просто”, а вот извлекать что-то полезное из принципиально низкокалорийных растительных кормов - это действительно “высокая технология”, для нее нужно как минимум обладать приличным исходным метаболизмом. Давайте посмотрим, как распределены фитoфaги среди позвоночных. Их много среди млекопитающих и птиц, но их вовсе нет (за парой исключений, о чем речь впереди) среди современных амфибий и рептилий. А вот среди рыб фитофаги есть (например, известный всем толстолобик - неутомимый борец с зарастанием ирригационных сооружений), хотя и не слишком много. Странная какая-то картина, бессистемная... Но только на первый взгляд.
С млекопитающими и птицами всё ясно, они теплокровные. А вот у рыб метаболизм, как ни странно, по целому ряду параметров является более продвинутым, чем у низших тетрапод; у некоторых скоростных видов (тунец, меч-рыба) возникает временная “теплокровность” - именно за счет наличия у них единственного круга кровообращения с полным разделением крови на венозную и артериальную. Так вот, один из двух случаев фитофагии у низших тетрапод — головастики (высокоспециализированные потребители водорослевых обрастании), но ведь головастик-то по сути дела не амфибия, а рыба, т.е. существо с жаберным дыханием и единственным кругом кровообращения. Второй случай - сухопутные черепахи: эти, напротив, довели до полного логического завершения стратегию пассивной защиты (практически непроницаемый панцирь) и за счет этого минимизировали все прочие расходы организма.
Между тем среди ископаемых рептилий фитофагов хватало; они были и среди тероморфов (например, дицинодонты}, и среди динозавров. Однако все они были существами крупноразмерными - в этих случаях фитофагия явно возникает на базе инерциальной гомойотермии. А вот в малом размерном классе фитофагия не возникает очень долго. вплоть до появления (в меловом периоде) высших млекопитающих, которое радикально изменит всю ситуацию в наземном сообществе. Но об этом - в следующей части.
Часть вторая. Отчего они всё-таки вымерли? Слово - физикам
Вымирание динозавров представляется широкой публике едва ли не самой жгучей тайной из всего, с чем имеют дело палеонтологи. Обычно картину эту представляют себе так. Есть вполне процветающая и многочисленная группа животных, как хищных так и растительноядных, которая не имеет конкурентов в животном мире (пришедшие ей на смену млекопитающие явно не вытеснили ее, а просто чуть позднее заняли освободившуюся экологическую нишу). И вот в один прекрасный момент (67 млн. лет назад, на границе между меловым периодом и кайнозойской эрой) группа эта вымирает — в одночасье и повсеместно.
Более того, их печальную судьбу разделило тогда множество групп живых существ. Исчезли не только динозавры на суше, но и все прочие гигантские рептилии: плезиозавры и мозазавры в морях, птерозавры в воздухе. Помимо рептилий в это время вымирают аммониты и белемниты (доминирующие группы мезозойских головоногих), иноцерамы и рудисты (крупные, размером до метра, двустворчатые моллюски) и еще множество морских беспозвоночных. Особенно сильно пострадал планктон: раковинные простейшие — радиолярии и форамениферы, одноклеточные водоросли с известковым (кокколитофориды) и кремнеземовым (диатомеи) скелетом. В общей сложности вымерло около четверти существовавших на тот момент семейств морских организмов. Не зря события конца мела называют “Великим вымиранием”.
При этом ископаемые остатки меловых видов обычны и разнообразны буквально до последнего миллиметра отложений перед мезозойско-кайнозойской границей. Из данных магнитной стратиграфии (этот раздел геологии занимается датировкой слоев по особенностям намагниченности составляющих их горных пород) следует, что наибольшие изменения фауны соответствуют краткому периоду обращенной полярности магнитного поля Л Земли (так называемый “интервал 39”), длившемуся не более 500 тыс. лет. Иными словами, смена мезозойской биоты на кайнозойскую произошла внезапно и очень быстро, что наводит на мысль о какой-то глобальной катастрофе. А поскольку изменения эти охватили как морские, так и сухопутные группы, экологически не связанные между собою, логично связать ее с какой-то внешней по отношению к биосфере причиной - земной (катастрофический вулканизм) или космической (вспышка сверхновой звезды, многократное усиление излучения из космоса из-за переполюсовки магнитного поля планеты, падение гигантского астероида).
Еще в 60-е годы при исследовании разреза пограничных мел-кайнозойских отложений в Губбио (Италия) в тонком слое глины, соответствующем фаунистической границе, была обнаружена необычайно высокая концентрация редкого металла иридия (1г), в 20 раз превышающая его среднее содержание в земной коре. Впоследствии такие иридиевые аномалии на мел-кайнозойской границе были найдены во множестве мест по всему миру, а содержание металла в некоторых из них превышает фоновое в 120 раз. Протяженность периода, когда накапливались эти осадки, была (судя по толщине слоя) очень невелика - не более 10 тыс. лет. В земной коре иридий редок потому, что металл этот хорошо растворим в железе (почти весь земной иридий сконцентрирован сейчас в ядре планеты). Соответственно, его довольно много в веществе железных метеоритов, представляющих собой (согласно воззрениям астрономов) фрагменты планетных ядер.
На этом основании астрофизик Л. Альварес в 1980 году предположил, что иридиевая аномалия - следствие удара о Землю крупного астероида, вещество которого рассеялось по всей ее поверхности (астероидная гипотеза). Чтобы получить наблюдаемое количество иридия, требуется тело внеземной природы диаметром приблизительно 10 км и массой 10 т. При его падении на сушу возникла бы воронка диаметром около 100 км (главным претендентом на эту роль считают кратер Чикксулуб на Юкатанском полуострове). Расчеты показывают, что при таком ударе в атмосферу было бы выброшено огромное количество пылевидного материала (в 60 раз больше массы самого астероида). Альварес и его сторонники полагают, что пыль обращалась вокруг Земли несколько лет, прежде чем осела обратно на поверхность. Это плотное пылевое облако, сквозь которое слабо проходит солнечный свет, должно было сильно ослабить фотосинтез, что привело к гибели растений (прежде всего планктонных водорослей, имеющих очень короткий жизненный цикл), а затем и питающихся ими животных. Кроме того, это должно было вызвать резкое охлаждение поверхности планеты (“астероидная зима”). В воде океанов из-за ослабления фотосинтеза накапливался бы растворенный углекислый газ, что вело бы к повышению ее кислотности, а это, в свою очередь, — к растворению карбонатных раковин различных организмов (от фораминифер до аммонитов).
Р. Кэрролл в своем учебнике палеонтологии пишет: “Ученые-физики, признавая основные выводы Альвареса, оспаривают некоторые детали. Специалисты же по ископаемым остаткам обычно настроены очень критически”. Палеонтолог А.Г. Пономаренко в своих лекциях, читаемых на биофаке МГУ, высказывается еще резче: “К несчастью, воззрения эти в последние годы распространились, как чума”. Палеонтологи, конечно, не могут профессионально оценить математические модели, из коих следует принципиальная, теоретическая возможность наступления “астероидной зимы” (хотя, по некоторым расчетам, пыль должна была осесть не через несколько лет, а уже через несколько недель), но вот о конкретных событиях конца мела им очень даже есть что сказать. Палеозоологи сомневаются в том, что между иридиевой аномалией (которая есть факт) и позднемеловым вымиранием (которое тоже факт), вообще существует какая-либо причинная связь.
Начнем с того, что иридиевых аномалий в отложениях самого различного возраста найдено (с той поры, как их стали целенаправленно искать) уже несколько десятков, но многие из них никак не связаны с крупными сменами фауны. И наоборот, все попытки обнаружить следы астероидных ударов (импактов) в горизонтах, непосредственно соответствующих другим крупным вымираниям, таким, например, как пермско-триасовое (по справедливости “Великим” следовало бы назвать именно его - оно было куда более масштабным, чем мел-кайнозойское), ни к чему не привели. Существует целый ряд точно датированных метеоритных кратеров даже более крупного размера, чем предполагаемый Альваресом (до 300 км в диаметре), и при этом достоверно известно, что ничего серьезного с биотой Земли в те моменты не происходило). Скрупулезное, “по миллиметрам”, изучение пограничных разрезов показало, что синхронность иридиевой аномалии и “Великого вымирания” сильно преувеличена. Массовое вымирание морских организмов было “мгновенным” лишь по геологическим меркам и продолжалось, но разным оценкам, от 10 до 100 тысячелетий, а вовсе не годы, как это должно быть по моделям. Последовательность исчезновения планктонных организмов в разных местах не одинакова, а пики вымирания могут расходиться со временем иридиевой аномалии на десятки тысяч лет, причем многие группы (например, аммониты) вымирают до аномалии, a не после нее.