 Алгоритм компактного хранения и решения СЛАУ высокого порядка - (реферат)
Алгоритм компактного хранения и решения СЛАУ высокого порядка - (реферат)
							  p>if (sscanf(TextBuffer, "%ld %lf %lf %lf", &NumPoints, &tx, &ty, &tz) ! = 4) continue;X[Current] = tx;
Y[Current] = ty;
Z[Current] = tz;
if (++Current == 999)
{
Vector t1 = X,
t2 = Y,
t3 = Z;
X. ReSize(2 * X. Size());
Y. ReSize(2 * X. Size());
Z. ReSize(2 * X. Size());
for (DWORD i = 0; i < Current; i++)
{
X[i] = t1[i];
Y[i] = t2[i];
Z[i] = t3[i];
}
}
if (Current % 100 == 0)
printf("Line: %ld\r", Current);
}
fclose(in1);
printf(" \r");
NumPoints = Current;
Current = 0L;
while (! feof(in2))
{
if (fgets(TextBuffer, 1000, in2) == NULL)
{
if (feof(in2)) break;
printf("Unable read file %s", fn2);
fclose(in2);
return false;
}
if (sscanf(TextBuffer, "%d %d %d %d %d %ld %ld %ld %ld %ld %ld %ld %ld", &tmp, &tmp, &tmp, &tmp, &tmp,
&FE[Current][0], &FE[Current][1], &FE[Current][3], &FE[Current][2], &FE[Current][4], &FE[Current][5], &FE[Current][7], &FE[Current][6]) ! = 13) continue;
    if (++Current == 999)
    {
    Matrix t = FE;
    FE. ReSize(2 * FE. Size1(), 10);
    for (DWORD i = 0; i < Current; i++)
    for (DWORD j = 0; j < 10; j++)
    FE[i][j] = t[i][j];
    }
    if (Current % 100 == 0)
    printf("Line: %ld\r", Current); }
    NumFE = Current;
    for (DWORD i = 0; i < NumFE; i++)
    for (DWORD j = 0; j < 10; j++)
    FE[i][j]--;
    printf(" \r");
    return true; }
    ПРИЛОЖЕНИЕ 2.
Исходный текст программы, реализующей алгоритм компактного хранения и решения СЛАУ высокого порядка.
    #include "matrix. h"
    class RVector
    {
    private:
    Vector Buffer;
    public:
    RVector(void) {}
    ~RVector() {}
    RVector(DWORD Size) { Buffer. ReSize(Size); }
    RVector(RVector& right) { Buffer = right. Buffer; }
    RVector(Vector& right) { Buffer = right; }
    DWORD Size(void) { return Buffer. Size(); }
    void ReSize(DWORD Size) { Buffer. ReSize(Size); }
    double& operator [] (DWORD i) { return Buffer[i]; }
RVector& operator = (RVector& right) { Buffer = right. Buffer; return *this; } RVector& operator = (Vector& right) { Buffer = right; return *this; } void Sub(RVector&);
    void Sub(RVector&, double);
    void Mul(double);
    void Add(RVector&);
    friend double Norm(RVector&, RVector&);
    };
    class TSMatrix
    {
    private:
    Vector Right;
    Vector* Array;
    Vector* Links;
    uint Dim;
    DWORD Size;
    public:
TSMatrix(void) { Size = 0; Dim = 0; Array = NULL; Links = NULL; } TSMatrix(Vector*, DWORD, uint);
    ~TSMatrix(void) { if (Array) delete [] Array; }
    Vector& GetRight(void) { return Right; }
    DWORD GetSize(void) { return Size; }
    uint GetDim(void) { return Dim; }
    Vector& GetVector(DWORD i) { return Array[i]; }
    Vector* GetLinks(void) { return Links; }
    void SetLinks(Vector* l) { Links = l; }
    void Add(Matrix&, Vector&);
    void Add(DWORD I, DWORD L, DWORD J, DWORD K, double v)
    {
    DWORD Row = I,
    Col = L * Links[I]. Size() * Dim + Find(I, J) * Dim + K;
    Array[Row][Col] += v;
    }
    void Add(DWORD I, double v)
    {
    Right[I] += v;
    }
    DWORD Find(DWORD, DWORD);
    void Restore(Matrix&);
    void Set(DWORD, DWORD, double, bool);
    void Set(DWORD Index1, DWORD Index2, double value)
    {
    DWORD I = Index1 / Dim,
    L = Index1 % Dim,
    J = Index2 / Dim,
    K = Index2 % Dim,
    Pos = Find(I, J),
    Row = I,
    Col;
    if (Pos == DWORD(-1)) return;
    Col = L * Links[I]. Size() * Dim + Find(I, J) * Dim + K;
    Array[Row][Col] = value;
    }
    bool Get(DWORD Index1, DWORD Index2, double& value)
    {
    DWORD I = Index1 / Dim,
    L = Index1 % Dim,
    J = Index2 / Dim,
    K = Index2 % Dim,
    Pos = Find(I, J),
    Row = I,
    Col;
    value = 0;
    if (Pos == DWORD(-1)) return false;
    Col = L * Links[I]. Size() * Dim + Find(I, J) * Dim + K;
    value = Array[Row][Col];
    return true;
    }
    void Mul(RVector&, RVector&);
    double Mul(DWORD, RVector&);
    void write(ofstream&);
    void read(ifstream&);
    };
    class RMatrix
    {
    private:
    Vector Buffer;
    DWORD size;
    public:
RMatrix(DWORD sz) { size = sz; Buffer. ReSize(size*(size + 1)*0. 5); } ~RMatrix() {}
    DWORD Size(void) { return size; }
double& Get(DWORD i, DWORD j) { return Buffer[(2*size + 1 - i)*0. 5*i + j - i]; }
    };
    //************************
    #include "smatrix. h"
    double Norm(RVector& Left, RVector& Right)
    {
    double Ret = 0;
    for (DWORD i = 0; i < Left. Size(); i++)
    Ret += Left[i] * Right[i];
    return Ret;
    }
    void RVector: :Sub(RVector& Right)
    {
    for (DWORD i = 0; i < Size(); i++)
    (*this)[i] -= Right[i];
    }
    void RVector: :Add(RVector& Right)
    {
    for (DWORD i = 0; i < Size(); i++)
    (*this)[i] += Right[i];
    }
    void RVector: :Mul(double koff)
    {
    for (DWORD i = 0; i < Size(); i++)
    (*this)[i] *= koff;
    }
    void RVector: :Sub(RVector& Right, double koff)
    {
    for (DWORD i = 0; i < Size(); i++)
    (*this)[i] -= Right[i]*koff;
    }
TSMatrix: :TSMatrix(Vector* links, DWORD size, uint dim) {
    Dim = dim;
    Links = links;
    Size = size;
    Right. ReSize(Dim * Size);
    Array = new Vector[Size];
    for (DWORD i = 0; i < Size; i++)
    Array[i]. ReSize(Links[i]. Size() * Dim * Dim);
    }
void TSMatrix: :Add(Matrix& FEMatr, Vector& FE) {
    double Res;
    DWORD RRow;
    for (DWORD i = 0L; i < FE. Size(); i++)
    for (DWORD l = 0L; l < Dim; l++)
    for (DWORD j = 0L; j < FE. Size(); j++)
    for (DWORD k = 0L; k < Dim; k++)
    {
    Res = FEMatr[i * Dim + l][j * Dim + k];
    if (Res) Add(FE[i], l, FE[j], k, Res);
    }
    for (DWORD i = 0L; i < FE. Size(); i++)
    for (DWORD l = 0L; l < Dim; l++)
    {
    RRow = FE[UINT(i % (FE. Size()))] * Dim + l;
    Res = FEMatr[i * Dim + l][FEMatr. Size1()];
    if (Res) Add(RRow, Res);
    }
    }
    DWORD TSMatrix: :Find(DWORD I, DWORD J)
    {
    DWORD i;
    for (i = 0; i < Links[I]. Size(); i++)
    if (Links[I][i] == J) return i;
    return DWORD(-1);
    }
    void TSMatrix: :Restore(Matrix& Matr)
    {
    DWORD i,
    j,
    NRow,
    NPoint,
    NLink,
    Pos;
    Matr. ReSize(Size * Dim, Size * Dim + 1);
    for (i = 0; i < Size; i++)
    for (j = 0; j < Array[i]. Size(); j++)
    {
NRow = j / (Array[i]. Size() / Dim); // Number of row NPoint = (j - NRow * (Array[i]. Size() / Dim)) / Dim; // Number of points NLink = j % Dim; // Number of link Pos = Links[i][NPoint];
    Matr[i * Dim + NRow][Pos * Dim + NLink] = Array[i][j];
    }
for (i = 0; i < Right. Size(); i++) Matr[i][Matr. Size1()] = Right[i]; }
void TSMatrix: :Set(DWORD Index, DWORD Position, double Value, bool Case) {
    DWORD Row = Index,
Col = Position * Links[Index]. Size() * Dim + Find(Index, Index) * Dim + Position,
    i;
    double koff = Array[Row][Col],
    val;
    if (! Case)
    Right[Dim * Index + Position] = Value;
    else
    {
    Right[Index * Dim + Position] = Value * koff;
    for (i = 0L; i < Size * Dim; i++)
    if (i ! = Index * Dim + Position)
    {
    Set(Index * Dim + Position, i, 0);
    Set(i, Index * Dim + Position, 0);
    if (Get(i, Index * Dim + Position, val))
    Right[i] -= val * Value;
    }
    }
    }
    void TSMatrix: :Mul(RVector& Arr, RVector& Res)
    {
    DWORD i,
    j,
    NRow,
    NPoint,
    NLink,
    Pos;
    Res. ReSize(Arr. Size());
    for (i = 0; i < Size; i++)
    for (j = 0; j < Array[i]. Size(); j++)
    {
    NRow = j / (Array[i]. Size() / Dim);
    NPoint = (j - NRow * (Array[i]. Size() / Dim)) / Dim;
    NLink = j % Dim;
    Pos = Links[i][NPoint];
Res[i * Dim + NRow] += Arr[Pos * Dim + NLink] * Array[i][j]; }
    }
    double TSMatrix: :Mul(DWORD Index, RVector& Arr)
    {
    DWORD j,
    I = Index / Dim,
    L = Index % Dim,
    Start = L * (Array[I]. Size() / Dim),
    Stop = Start + (Array[I]. Size() / Dim),
    NRow,
    NPoint,
    NLink,
    Pos;
    double Res = 0;
    for (j = Start; j < Stop; j++)
    {
    NRow = j / (Array[I]. Size() / Dim);
    NPoint = (j - NRow * (Array[I]. Size() / Dim)) / Dim;
    NLink = j % Dim;
    Pos = Links[I][NPoint];
    Res += Arr[Pos * Dim + NLink] * Array[I][j];
    }
    return Res;
    }
    void TSMatrix: :write(ofstream& Out)
    {
    DWORD ColSize;
    Out. write((char*)&(Dim), sizeof(DWORD));
    Out. write((char*)&(Size), sizeof(DWORD));
    for (DWORD i = 0; i < Size; i++)
    {
    ColSize = Array[i]. Size();
    Out. write((char*)&(ColSize), sizeof(DWORD));
    for (DWORD j = 0; j < ColSize; j++)
    Out. write((char*)&(Array[i][j]), sizeof(double));
    }
    for (DWORD i = 0; i < Size * Dim; i++)
    Out. write((char*)&(Right[i]), sizeof(double));
    }
    void TSMatrix: :read(ifstream& In)
    {
    DWORD ColSize;
    In. read((char*)&(Dim), sizeof(DWORD));
    In. read((char*)&(Size), sizeof(DWORD));
    if (Array) delete [] Array;
    Array = new Vector[Size];
    Right. ReSize(Size * Dim);
    for (DWORD i = 0; i < Size; i++)
    {
    In. read((char*)&(ColSize), sizeof(DWORD));
    Array[i]. ReSize(ColSize);
    for (DWORD j = 0; j < ColSize; j++)
    In. read((char*)&(Array[i][j]), sizeof(double));
    }
    for (DWORD i = 0; i < Size * Dim; i++)
    In. read((char*)&(Right[i]), sizeof(double));
    }




