Мониторинг геофизических процессов - (реферат)
p>Теллурические токи обычно обладают значительной изменчивостью, периодичность которой определяется активностью процессов на Солнце и в ионосфере. В течение более продолжительных интервалов времени (десятки, сотни лет) также отмечается изменчивость составляющих магнитного поля Земли. По результатам измерения магнитного склонения и магнитного наклонения в Лондоне и Париже установлено, что за последние 350 лет вариации достигают 30о по склонению и 10опо наклонению. Эти плавные изменения геомагнитного поля по напряженности обычно не превышают десятков гамм и называютсявековыми вариациями. Их изучение в различных участках Земли позволило установить еще одну форму изменчивости геомагнитного поля. Так, выявлено, что его аномалии плавно перемещаются на запад примерно в широтном направлении. Это свойство геомагнитного поля называетсязападным дрейфом. Скорость дрейфа довольно значительная - около 0, 18ов год. При этой скорости наблюдаемое распределение аномалий магнитного поля совершит полный оборот вокруг Земли примерно за 1800 лет.В отличие от суточных вариаций и магнитных бурь, которые связаны с излучением Солнца, вековые вариации и западный дрейф геомагнитного поля, очевидно, обусловлены глубинным источником, расположенным в недрах Земли. По подсчетам, с внешними источниками, основным из которых является Солнце, связано около 6% полного геомагнитного поля. На долю внутренних источников, природа которых, к сожалению, изучена недостаточно, приходится около 94% измеряемого магнитного поля Земли.
Интенсивность внутреннего источника можно оценить количественно по напряженности создаваемого им поля. Мерой интенсивности может служитьмагнитный момент, эквивалентный силе, которую необходимо приложить к магниту, чтобы удержать его в положении, перпендикулярном к внешнему магнитному полю. По результатам вычислений магнитного момента, проводимых с 1829 года, его значение постепенно уменьшается со средней скоростью около 3, 7Ч10-25 А/м2Чгод, или 0, 04% в год. Если это уменьшение будет продолжаться еще 1200 лет, то геомагнитное поле исчезнет.
Изменчивость магнитного поля Земли - суточные и вековые вариации, западный дрейф - обусловливают необходимость периодического повторения магнитных измерений и обновления магнитных карт, поэтому на картах составляющих геомагнитного поля обычно указан год, которому соответствует показание распределения поля.
Проблема происхождения магнитного поля относится к ряду сложных и до сих пор не решенных. Для объяснения природы земного магнетизма предложен ряд гипотез. Ферромагнитная гипотеза. По расчетам содержание ферромагнетиков в земной коре слишком мало для создания геомагнитного поля. Однако с глубиной содержание тяжелых металлов возрастает, особенно в ядре, которое состоит в основном из ферромагнетиков - железа и никеля. Наличие ферромагнетиков и шарообразная форма ядра являются исходными предпосылками гипотезы постоянного магнита. По этой гипотезе ядро Земли представляет собой намагниченное тело, создающее магнитное поле дипольного характера. Однако предположение о намагниченности ядра не согласуется с данными о его температуре, превышающей здесь 2000оС, что намного больше не только точки Кюри, при которой магнитные свойства полностью исчезают, но и температуры плавления железа и никеля (соответственно, 1535 и 1453оС). Учитывая давление в ядре Земли, можно допустить некоторое повышение точки Кюри, например, для железа до 780оС, но все равно эта температура намного ниже реально существующих температур в ядре. Кроме того, доказано жидкое состояние внешнего ядра, в то время как постоянные магниты в жидком состоянии неизвестны и существование их по теоретическим соображениям невозможно. Ферромагнитная гипотеза не дает ответа на вопросы о том, какие факторы могли намагнитить ядро Земли , чем определяются вековые вариации и изменения полярности геомагнитного поля. Электрические гипотезы. Внешнее ядро, находясь в жидком состоянии, быстрее реагирует на приложенные к нему силы, чем твердые мантия и земная кора. Поэтому вековые вариации магнитного поля связываются в первую очередь именно с электромагнитными эффектами в ядре. Для создания наблюдаемого геомагнитного поля требуется существование электрического тока порядка 109А. Электрический ток может возникнуть в результате термоэлектрического эффекта, т. е. разности температур на “спаях” разнородных металлов. Такая ситуация может возникнуть на границе мантии и ядра, где существуют участки с различной температурой. Однако в этой гипотезе не установлено, достаточна ли сила термоэлектрического тока для образования геомагнитного поля, не объясняется формирование дипольного характера поля и другие его особенности. Более разработана (с участием акад. Я. И. Френкеля) гипотеза динамо, основанная на магнитогидродинамике - электромагнетизме проводящей жидкости. Согласно этой гипотезе в ядре Земли возникают кольцевые электрические токи противоположного направления в результате тепловой конвекции во внешнем ядре. В верхних слоях внешнего ядра в результате трения о подошву мантии скорость конвекции снижается, а в нижних слоях, на границе с субъядром, относительно увеличивается. Эти контрасты в скоростях течений приводят к образованию замкнутых тороидальных электрических полей большой напряженности (около 5 В/м), которые вследствие своей формы не выходят за пределы ядра. Взаимодействие этих полей с конвективными потоками и течениями на поверхности ядра приводит к появлению в ядре кольцевых токов широтного направления и связанных с ними магнитных полей. Однако кориолисова сила вращения Земли приводит к усреднению этих полей и образованию суммарного поля, близкого к дипольному, с осью, приближающейся к оси вращения. Таким образом, наблюдаемое геомагнитное поле является результирующим при сложении двух неравных и противоположно направленных магнитных полей. Вариации конвективных течений являются причинами того, что одно из генерируемых полей доминирует (и определяет полярность геомагнитного поля); вследствие изменения конвективных потоков доминирующее поле (и полярность) может меняться, с чем и связаны инверсии геомагнитного поля. Изменение скоростей течения на поверхности ядра способно вызвать также миграцию полюсов результирующего поля, а общее отставание течения на поверхности ядра от вращения мантии объясняет западный дрейф поля. Приведенный принцип действия одной из моделей МГД-генератора предполагает самовозбуждение в ядре Земли - усиление слабого магнитного поля дипольного характера, необходимого для начала работы динамо. Таким начальным полем, по-видимому, могли служить слабые магнитные поля термоэлектрического происхождения. Гипотеза динамо предполагает тепловую конвекцию во внешнем ядре. Для объяснения причин возникновения и поддержания конвекции в ядре предложены два механизма: радиоактивный распад и выделение энергии, сопровождающее рост субъядра: потенциальной (при гравитационной дифференциации) и скрытой (за счет фазового перехода вещества из жидкого в твердое состояние). Концентрация радиоэлементов в ядре очень низка (в 1000 раз меньше, чем в земной коре), поэтому вклад этого механизма тепловыделения оценивается как подчиненный. Особенности магнитного и электрического (теллурического) полей Земли, а также различие магнитных и электрических свойств пород используется для практических целей - для поисков руд. Скопление руд тяжелых металлов: железа, титана, никеля и др. ферромагнетиков обусловливает повышение уровня магнитного поля и возникновение аномалий. Крупная аномалия сопровождала месторождение железных руд на юге России - Курскую магнитную аномалию (КМА). Обнаружение этой аномалии собственно и привело к открытию месторождения. В пределах КМА магнитная стрелка отклоняется так резко, что ее “северный” конец часто указывает на запад, восток и даже юг, а напряженность магнитного поля достигает 0, 01-0, 03 А/м, что в 2-3 раза выше общей напряженности геомагнитного поля. Протяженность этой аномалии и размеры месторождения железистых кварцитов огромны - она протягивается на 600 км с севера на юг и на 400 км с запада на восток. Однако такие обширные и интенсивные аномалии встречаются очень редко. Чаще приходится иметь дело с локальными и небольшими по амплитуде аномалиями, сопровождающими те или иные месторождения, генетически обусловленные магматическими породами. С помощью магнитной съемки хорошо выделяются кимберлитовые трубки, с которыми связаны месторождения алмазов.
Регистрация электрических полей также помогает выявить месторождения некоторых руд. Например, хорошо выявляются сульфидные залежи, в которых происходят процессы окисления, зоны циркуляции минерализованных вод и др. Геотермия дает важнейшую количественную информацию для понимания и моделирования геодинамических процессов в геосферах и для оценки энергетики геолого-геофизических проявлений - в этом заключается фундаментальные аспекты изучения теплового поля. Но не менее важны и прикладные аспекты геотермических исследований. Они связаны, с одной стороны, с оценкой геотермальных ресурсов для их использования в энергетике, теплоснабжении, коммунальном и сельском хозяйстве, а с другой - с применением геотермического метода поисков и разведки месторождений на континентах и на акваториях в комплексе с другими геолого-геохимико-геофизическими методами.
Тепловое поле Земли первым из геофизических полей привлекло внимание человека. Самые бурные проявления термической активности - извержения вулканов - сыграли важную роль в формировании религиозных мифологических представлений о строении мира. Другая форма геотермальной активности - горячие источники - с незапамятных времен использовались человеком для хозяйственных бытовых нужд. Таким образом, тепловое поле Земли оказалось первым объектом практического использования, по-видимому, опередив даже использование геомагнитного поля, выразившееся в изобретении компаса китайскими мореплавателями. Но и предметом научных исследований тепловое поле Земли тоже стало раньше всех других полей. Началом этой стадии можно считать наблюдения за извержением Везувия в 73 г. до н. э. Плиния-Старшего, погибшего при этом и ставшего первой в истории жертвой научного энтузиазма. Но возможно, что начало этого этапа следует отодвинуть еще дальше, в третий век до н. э. , когда великий философ Эмпедокл, уединившись, поселился на склоне Этны, в башне, которая впоследствии была названа "Торре дель Философо" (Башня философа). Много веков спустя на этом месте была создана одна из итальянских вулканологических обсерваторий; этот факт характеризует преемственность науки.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17