Мониторинг геофизических процессов - (реферат)
p>В районах с высокими тепловыми потоками, например в вулканических областях, делались попытки прямых измерений теплового потока с помощьютепломеров. К сожалению, их низкая чувствительность не позволяет использовать тепломеры в областях со средними и низкими тепловыми потоками.Поведение физических полей Земли (гравитационного, магнитного, теплового и др. ) определяется физическими свойствами горных пород (плотностью, намагниченностью, теплопроводностью, упругостью и пр. ), которые зависят от их минералогического состава, от давления и температуры. Роль двух последних факторов неодинакова. Давление на одних и тех же глубинах практически остается постоянным, а температура значительно изменяется в зависимости от величины теплогенерации и теплового потока. В некоторых районах колебания температур могут оказывать определяющее влияние на поведение физических параметров и, следовательно, на характер физических полей. Особенно чувствительны к изменению температур электропроводность и намагниченность.
Таким образом, между распределением тепловых потоков и другими геофизическими полями должны существовать достаточно тесные связи. Они основываются, с одной стороны, на чувствительности этих полей к колебаниям физических параметров горных пород, которые определяются их литолого-петрографическими особенностями, минералогическим составом и характером залегания, а с другой - на зависимости этих параметров от температуры, изменяющейся в соответствии с величиной теплового потока.
Природа и источники крупнейших геофизических проявлений: вулканизм, сейсмичность (в том числе цунами), гидротермальная деятельность, торнадо
Крупнейшие геофизические катастрофы, связанные с многочисленными жертвами и разрушениями, вызываются в результате сейсмической активности литосферы, которая чаще всего проявляется в видеземлетрясений. Землетрясением называется сотрясение земной коры, вызванное естественными причинами. Они проявляются в виде подземных толчков, часто сопровождаются подземным гулом, волнообразными колебаниями почвы, образованием трещин, разрушением зданий, дорог и, что самое печальное, человеческими жертвами. Землетрясения играют заметную роль в жизни планеты. Ежегодно на Земле регистрируется свыше 1 млн. подземных толчков, что составляет в среднем около 120 толчков в час или два в минуту. Можно сказать, что земля находится в состоянии постоянного содрогания. К счастью, немногие из них бывают разрушительными и катастрофическими. В год происходит в среднем одно катастрофическое землетрясение и 100 разрушительных.
Сильные землетрясения происходят довольно редко. Из катастрофических землетрясений по разрушительной силе наиболее известны Лиссабонское (1755 г. ), Калифорнийское (1906 г. ), Тайваньское (1923 г. ), Мессинское (1908 г. ), Ганьсуйское (1920 г. ), Токийское (1923 г. ), Иранское (1935 г. ), Чилийское (1939 и 1960 г. г. ), Агадирское (1960 г. ), Мексиканское (1975 г. ) землетрясения. На территории стран СНГ к наиболее значительным следует отнести Ашхабадское (1948 г. ), Ташкентское (1966 г. ), Газлинское (1976 г. ), Спитакское (1986 г. ), Нефтегорское (1995 г. ) землетрясения.
Масштабы разрушений при крупных землетрясениях огромны. В земной коре возникают крупные дизъюнктивные дислокации. Так, при катастрофическом землетрясении 4 декабря 1957 г. в Монгольском Алтае возник разлом Богдо длиной около 270 км, а общая длина образовавшихся разломов достигла 850 км. Вот только часть из многочисленных последствий землетрясений.
Повреждение построек:
трескаются, рассыпаются или опрокидываются домовые трубы,
трескаются стены; сырцовые и другие кирпичные стены теряют прочность и падают обрушиваются крыши
падают выступающие части зданий (карнизы, парапеты)
падают внутренние полки и шкафы, содержимое вываливается,
здания раскалываются на части и падают,
падают и разрушаются водонапорные башни и нефтехранилища,
обрушиваются мосты, колонны и эстакады,
становятся неровными, изгибаются и разрушаются шоссейные и железные дороги, рвутся телефонные провода и кабели; выходят из строя линии электропередачи, начинаются пожары,
разрываются водопроводные трубы, нефте- и газопроводы, трубы канализационной системы.
Геологические последствия:
на грунте появляются трещины, иногда зияющие,
возникают воздушные, водяные, грязевые или песчаные фонтаны; при этом образуются скопления глины или груды песка,
прекращают или изменяют свое действие некоторые родники и гейзеры; возникают новые,
грунтовые воды становятся мутными (взбаламучиваются),
возникают оползни, грязевые и селевые потоки, обвалы; происходит разжижение почвы и песчано-глинистых пород,
происходит подводное оползание и образуются мутьевые (турбидитные) потоки, обрушиваются береговые утесы, берега рек, насыпные участки, возникают сейсмические морские волны (цунами),
срываются снежные лавины; от шельфовых ледников отрываются айсберги, образуются зоны нарушений рифтового характера с внутренними грядами и подпруженными озерами,
грунт становится неровным с участками просадки и вспучивания, на озерах возникают сейши (стоячие волны и взбалтывание волн у берегов); нарушается режим приливов и отливов,
активизируется вулканическая и гидротермальная деятельность. Землетрясения - это социальное явление, т. к. им подвержено более 10% суши, на которой проживает половина человечества. Землетрясения остаются наиболее губительными из природных катастроф - наиболее крупные из них уносят сотни тысяч жизней и оставляют следы разрушительной деятельности на тысячах км2. Из исторических данных известно, что при землетрясении 1556 г. в Шаньси погибло 830 тысяч человек; уже в наши дни, 28 июля 1976 г. в результате катастрофического землетрясения был разрушен г. Таньшань (в 150 км к востоку от Пекина), при этом погибло 655 тыс. человек.
Землетрясения вызываются внезапными, быстрыми смещениями крыльев существующих или вновь образующихся тектонических разломов; напряжения, которые при этом возникают, способны передаваться на большие расстояния. Возникновение землетрясений на крупных разломах происходит при длительном смещении в противоположные стороны тектонических блоков или плит, контактирующих по разлому. При этом силы сцепления удерживают крылья разлома от проскальзывания, и зона разлома испытывает постепенно возрастающую сдвиговую деформацию. При достижении ею некоторого предела происходит “вспарывание” разлома и смещение его крыльев. Землетрясения на вновь образующихся разломах рассматриваются как результат закономерного развития систем взаимодействующих трещин, объединяющихся в зону повышенной концентрации разрывов, в которой формируется магистральный разрыв, сопровождающийся землетрясением. Объем среды, где снимается часть тектонических напряжений и высвобождается некоторая доля накопленной потенциальной энергии деформации, называется очагом землетрясения. Количество энергии, выделяющееся при одном землетрясении, зависит главным образом от размеров сдвинувшейся поверхности разлома. Максимально известная длина разломов, вспарывающихся при землетрясении, находится в диапазоне 500-1000 км (Камчатское - 1952, Чилийское - 1960 и др. ), крылья разломов смещались при этом в стороны до 10 м. Пространственная ориентация разлома и направление смещения его крыльев получили название механизма очага землетрясения.
Центр возникновения землетрясения, т. е. то место, где началось “вспарывание” разлома, называется его фокусом или гипоцентром. Расчеты параметров гипоцентра реальных землетрясений показывают, что в первом приближении очаг представляет собой сферу, радиус которой может измеряться десятками км. Таким образом, обычно очаг землетрясения не точка, а некоторый объем, размер которого для сильных землетрясений значителен.
В очагах землетрясений возбуждаются упругие продольные Р и поперечные S сейсмические волны, распространяющиеся во все стороны. Характер их распространения достаточно сложен и определяется особенностями внутреннего строения Земли. Точка на поверхности, расположенная на кратчайшем расстоянии от очага, называется эпицентром, а точка, наиболее удаленная от очага антиэпицентром. Максимальной разрушительной силы землетрясение достигает в эпицентре, по мере удаления от эпицентра сила его убывает.
Линии равных значений силы землетрясения называются изосейстами, а зона, окружающая эпицентр и ограниченная изосейстой максимального значения, называется плейстосейстовой областью. Форма этой области целиком определяется геологическими условиями района эпицентра. Обычно форма плейстосейстовой области в горных районах простирается вдоль основного простирания горной цепи, хотя и бывают исключения из этого правила.
Для энергетической классификации землетрясений на практике пользуются его магнитудой (М или m). Под магнитудой (иногда неправильно называемой интенсивностью землетрясения по шкале Рихтера) понимается логарифм отношения максимального смещения земной поверхности в волне данного типа или максимальной скорости смещения к аналогичной величине для землетрясения, магнитуда которого условно принята равной нулю. Классификация землетрясений по магнитуде введена в 1935 г. американским сейсмологом Ч. Рихтером применительно к территории Калифорнии. В начале 40-х годов она применена Б. Гутенбергом и Рихтером для энергетической классификации землетрясений всего мира. Для расчета М используется эмпирический закон изменения максимальной амплитуды сейсмической волны (А) или скорости колебаний (А/Т) с эпицентральным расстоянием (D), т. е. расстоянием до эпицентра землетрясения - это так называемая калибровочная функцияs(D): М = lgA+sA(D) или М = lg(A/T)+sA/T(D), где Т - период волны. Максимально известное значение Мприближается к 9, 0. За год на земном шаре в среднем происходит по одному землетрясению сМ і8, 0 ; десять землетрясений с М=7, 0-7, 9; 100 - с М=6, 0-6, 9; 1000 - с М=5, 0-5, 9; 10000 - с М=4, 0-4, 9. На территории СНГ магнитуда, например Камчатского-1952 землетрясения составила 8, 5, Кеминского-1911 - 8, 2, Ашхабадского-1948 - 7, 3, Газлинского-1984 - 7, 2, Спитакского-1986 - 6, 9, Дагестанского-1970 - 6, 6, Андижанского-1902 6, 4, Ленинаканского-1926 - 5, 7, Ташкентского-1966 - 5, 1, Эстонского-1976 4, 3.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17