Физическая география
p align="left">Преобладающая часть радиации, отраженной земной поверхностью и верхней поверхностью облаков, уходит за пределы атмосферы в мировое пространство. Также уходит в мировое пространство часть рассеянной радиации, около одной трети ее. Отношение этой уходящей в космос отраженной и рассеянной солнечной радиации к общему количеству солнечной радиации, поступающему в атмосферу, носит название планетарного альбедо Земли или просто альбедо Земли.Планетарное альбедо Земли оценивается в 35-40%; по-видимому, оно ближе к 35%. Основную часть планетарного альбедо Земли составляет отражение солнечной радиации облаками.
11. Явления, связанные с рассеянием радиацииГолубой цвет неба -- это цвет самого воздуха, обусловленный рассеянием в нем солнечных лучей. С высотой, по мере уменьшения плотности воздуха, т. е. количества рассеивающих частиц, цвет неба становится темнее и переходит в густо-синий, а в стратосфере -- в черно-фиолетовый.Чем больше в воздухе помутняющих примесей более крупных размеров, чем молекулы воздуха, тем больше доля длинноволновых лучей в спектре солнечной радиации и тем белесоватее становится окраска небесного свода. Рассеяние меняет окраску прямого солнечного света. Солнечный диск кажется тем желтее, чем ближе он к горизонту, т. е. чем длиннее путь лучей через атмосферу и чем больше рассеяние.Рассеяние солнечной радиации в атмосфере обусловливает рассеянный свет в дневное время. В отсутствии атмосферы на Земле было бы светло только там, куда попадали бы прямые солнечные лучи или солнечные лучи, отраженные земной поверхностью и предметами на ней. После захода солнца вечером темнота наступает не сразу. Небо, особенно в той части горизонта, где зашло солнце, остается светлым и посылает к земной поверхности рассеянную радиацию с постепенно убывающей интенсивностью - сумерки. Причиной его является освещение солнцем, находящимся под горизонтом, высоких слоев атмосферы.Так называемые астрономические сумерки продолжаются вечером до тех пор, пока солнце не зайдет под горизонт на 18°; к этому моменту становится настолько темно, что различимы самые слабые звезды. Утренние сумерки начинаются с момента, когда солнце имеет такое же положение под горизонтом. Первая, часть вечерних или последняя часть утренних астрономических сумерек, когда солнце находится под горизонтом не ниже 8°, носит название гражданских сумерек.Продолжительность астрономических сумерек меняется в зависимости от широты и от времени года. В средних широтах она от полутора до двух часов, в тропиках меньше, на экваторе немногим дольше одного часа.
В высоких широтах летом солнце может не опускаться под горизонт вовсе или опускаться очень неглубоко. Если солнце опускается под горизонт менее чем на 18°, то полной темноты вообще не наступает и вечерние сумерки сливаются с утренними. Это явление называют белыми ночами.
Сумерки сопровождаются красивыми, иногда очень эффектными изменениями окраски небесного свода в стороне солнца. Эти изменения начинаются еще до захода или продолжаются после восхода солнца. Они имеют довольно закономерный характер и носят название зари. Характерные цвета зари -- пурпурный и желтый; но интенсивность и разнообразие цветовых оттенков зари меняются в широких пределах в зависимости от содержания аэрозольных примесей в воздухе. Разнообразны и тона освещения облаков в сумерках.
В части небосвода, противоположной солнцу, наблюдаются явления противозари, также со сменой цветовых тонов, с преобладанием пурпурных и пурпурно-фиолетовых. После захода солнца в этой части небосвода появляется тень Земли: все более растущий в высоту и в стороны серовато-голубой сегмент.
Явления зари объясняются рассеянием света мельчайшими частицами атмосферных аэрозолей и дифракцией света на более крупных частицах.
12. Радиационный баланс земной поверхности
Разность между поглощенной радиацией и эффективным излучением называют радиационным балансом земной поверхности. Другое ее название -- остаточная радиация.
Радиационный баланс переходит от ночных, отрицательных значений к дневным, положительным после восхода солнца при высоте его 10--15°. От положительных значений к отрицательным он переходит перед заходом солнца при той же его высоте над горизонтом. При наличии снежного покрова радиационный баланс переходит к положительным значениям только при высоте солнца около 20--25°, так как при большом альбедо снега поглощение им суммарной радиации мало. Днем радиационный баланс растет с увеличением высоты солнца и убывает с ее уменьшением. В ночные часы, когда суммарная радиация отсутствует, отрицательный радиационный баланс равен эффективному излучению и потому меняется в течение ночи мало, если только условия облачности остаются одинаковыми.Средние полуденные значения радиационного баланса в Ленинграде летом при облачности менее 7/10 покрытия неба -- около 0,7--0,8 кал/см2 мин. При облачности от 7/10 до полной наблюдаются и очень высокие (до 1,0 кал/см2 мин), и очень низкие (до 0,1 кал/см2 мин) значения.
13. Излучение в мировое пространство
Излучение нижних слоев атмосферы поглощается в вышележащих ее слоях. Но, по мере удаления от земной поверхности, содержание водяного пара, основного поглотителя радиации, уменьшается, и нужен все более толстый слой воздуха, чтобы поглотить излучение, поступающее от нижележащих слоев. Начиная с некоторой высоты водяного пара вообще недостаточно для того, чтобы поглотить все излучение, идущее снизу, и из этих верхних слоев часть атмосферного излучения будет уходить в мировое пространство. Подсчеты показывают, что наиболее сильно излучающие в пространство слои атмосферы лежат на высотах 6--10 км.Длинноволновое излучение земной поверхности и атмосферы, уходящее в космос, называется уходящей радиацией. Оно составляет около 65 единиц, если за 100 единиц принять приток солнечной радиации в атмосферу. Вместе с отраженной и рассеянной коротковолновой солнечной радиацией, выходящей за пределы атмосферы в количестве около 35 единиц (см. в параграфе 17 о планетарном альбедо Земли), эта уходящая радиация компенсирует приток солнечной радиации к Земле. Таким образом, Земля вместе с атмосферой теряет столько же радиации, сколько и получает, т. е. находится в состоянии лучистого (радиационного) равновесия.
14. Географическое распределение радиационного баланса и суммарной радиации
Итак, рассмотрим распределение годовых и месячных количеств (сумм) суммарной радиации по Земному шару. Мы видим, что оно не вполне зонально: изолинии (т. е. линии равных величин) радиации на картах не совпадают с широтными кругами. Отклонения эти объясняются тем, что на распределение радиации по Земному шару оказывают влияние прозрачность атмосферы и облачность.
Годовые количества суммарной радиации составляют в тропических и субтропических широтах свыше 140 ккал/см2. Они особенно велики в малооблачных субтропических пустынях, а в северной Африке достигают 200--220 ккал/см2. Зато над приэкваториальными лесными областями с их большой облачностью (над бассейнами Амазонки и Конго, над Индонезией) они снижены до 100--120 ккал/см2. К более высоким широтам обоих полушарий годовые количества суммарной радиации убывают, достигая под 60° широты 60--80 ккал/см2. Но затем они снова растут -- мало в северном полушарии, но весьма значительно над малооблачной и снежной Антарктидой, где в глубине материка они достигают 120--130 ккал/см2, т. е. величин, близких к тропическим и превышающих экваториальные.
Над океанами суммы радиации ниже, чем над сушей.
В декабре наибольшие суммы радиации, до 20-- 22 ккал/см2 и даже выше, в пустынях южного полушария. Но в облачных районах у экватора они снижены до 8-- 12 ккал/см2. В зимнем северном полушарии радиация быстро убывает на север; к северу от 50-й параллели она менее 2 ккал/см2 и несколько севернее полярного круга равна нулю. В летнем южном полушарии она убывает к югу до 10 ккал/см2 и ниже в широтах 50--60°. Но затем она растет -- до 20 ккал/см2 у берегов Антарктиды и свыше 30 ккал/см2 внутри Антарктиды, где она, таким образом, больше, чем летом в тропиках.
В июненаивысшие суммы радиации, свыше 22 ккал/см2, над северо-восточной Африкой, Аравией, Иранским нагорьем. До 20 ккал/см2 и выше они в Средней Азии; значительно меньше, до 14 ккал/см2, в тропических частях материков южного полушария. В облачных приэкваториальных областях они, как и в декабре, снижены до 8--12 ккал/см2. В летнем северном полушарии суммы радиации убывают от субтропиков к северу медленно, а севернее 50° с. ш. возрастают, достигая 20 ккал/см2 и более в Арктическом бассейне. В зимнем южном полушарии они быстро убывают к югу, до нуля за южным полярным кругом.
Не вся суммарная радиация поглощается земной поверхностью. В какой-то части она отражается. Путем отражения теряется в общем от 5 до 20% суммарной радиации. В пустынях и особенно в областях со снежным и ледяным покровом потеря путем отражения больше.
Географическое распределение радиационного баланса
Как известно, радиационный баланс является разностью между суммарной радиацией и эффективным излучением. Поэтому вначале мы кратко рассмотрим географическое распределение эффективного излучения.
Эффективное излучение земной поверхности распределяется по Земному шару более равномерно, чем суммарная радиация. Дело в том, что с ростом температуры земной поверхности, т. е. с переходом к более низким широтам, растет собственное излучение земной поверхности; но одновременно растет и встречное излучение вследствие большего влагосодержания воздуха и более высокой его температуры. Поэтому изменения эффективного излучения с широтой не слишком велики.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28