RSS    

   Физическая география

p align="left">Разделение зарядов в кучево-дождевых облаках, т. е. скопление электричества одного знака в одной части облака и другого знака в другой, приводит к огромным значениям напряженности электрического поля атмосферы в облаках и между облаками и землей.

Причины электризации элементов облаков и осадков, а также разделения зарядов обоих знаков в облаках недостаточно ясны; существует много различных теорий. Указывают такие причины, как захват ионов капельками и кристаллами, особенно при выпадении осадков; столкновение крупных и мелких капель; дробление (разбрызгивание) капель; сублимация, дробление и испарение кристаллов; замерзание переохлажденных капелек на кристаллах и пр.

Гроза

Типичное развитие кучево-дождевых облаков и выпадение из них осадков связано с мощными проявлениями атмосферного электричества, а именно с многократными электрическими разрядами в облаках или между облаком и землей. Такие разряды искрового характера называют молниями, а сопровождающие их звуки -- громом. Весь процесс, часто сопровождаемый еще и кратковременными усилениями ветра -- шквалами, называется грозой.

По происхождению грозы делятся на те же типы, что и кучево-дождевые облака. Различают внутримассовые и фронтальные грозы.

Внутримассовые грозы наблюдаются двух типов: в холодных воздушных массах, перемещающихся на теплую земную поверхность, и над прогретой сушей летом (местные, или тепловые, грозы). В обоих случаях развитие грозы связано с мощным развитием облаков конвекции, а следовательно, с сильной неустойчивостью стратификации атмосферы и с сильными вертикальными перемещениями воздуха.

Фронтальные грозы связаны главным образом с холодными фронтами, где теплый воздух вытесняется вверх продвигающимся вперед холодным воздухом. Но летом над сушей они нередко связаны и с теплыми фронтами. Континентальный теплый воздух, поднимающийся летом над поверхностью теплого фронта, может оказаться очень неустойчиво стратифицированным, а потому над поверхностью фронта может возникнуть сильная конвекция.

Продолжительность грозы в каждом отдельном месте обычно невелика: от минут до нескольких часов. Число молний при сильной грозе измеряется десятками в одну минуту. Как правило, гроза сопровождается ливневыми осадками, иногда градом.

Грозы особенно часты над сушей в тропических широтах: здесь есть районы, где в году 100--150 дней и более с грозами. На океанах в этой зоне гроз гораздо меньше, примерно 10-- 30 дней в году. Тропические циклоны всегда сопровождаются жестокими грозами; однако сами эти возмущения наблюдаются редко.

В субтропических широтах, где преобладает высокое давление, гроз гораздо меньше: над сушей 20--50 дней с грозами в году, над морем 5--20 дней. В умеренных широтах 10--30 дней с грозами над сушей и 5--10 дней над морем. В полярных широтах грозы -- уже единичное явление.

Молния и гром

Необходимым условием грозы является возникновение очень больших разностей электрического потенциала в облаках, или между облаками, или между облаками и земной поверхностью. Это возможно при сильной электризации облаков. Облачные элементы по тем или иным причинам получают электрические заряды разного знака, и происходит разделение этих зарядов: заряды одного знака накапливаются в одной части облака, заряды другого знака -- в другой. В кучево-дождевых облаках этот процесс настолько интенсивен, что создаются огромные разности потенциалов. При этом напряженность поля, т. е. разность потенциалов на единицу длины, иногда измеряется сотнями тысяч, вольт на каждый метр.

Так как электропроводность воздуха вообще очень мала, то быстро возникающие разности потенциалов не могут выравняться постепенно, путем тока проводимости. Когда напряженность поля достигает некоторого критического значения (порядка 25--50 тыс. в/м и более), разности потенциалов выравниваются посредством искровых разрядов -- молний -- между разноименно заряженными облаками или частями облаков или между облаком и землей. На пути в несколько километров (а такова обычная длина молнии) разность потенциалов может достигать сотен миллионов вольт, а сила тока в молнии будет порядка десятков тысяч ампер. Одна молния переносит за доли секунды несколько кулонов электричества; по некоторым данным, даже в среднем около 30 кулонов.

Молния состоит из нескольких, иногда многих последовательных разрядов -- импульсов -- по одному и тому же пути, называемому каналом молнии. Этот канал извилистый и разветвленный, потому что разряды происходят по пути наименьшего электрического сопротивления в атмосфере, а стало быть, по такому пути, где плотность атмосферных ионов особенно велика. Канал молнии виден потому, что воздух в нем раскаляется до ослепительного розово-фиолетового свечения. Температура в канале достигает 25000--30000°. Интервалы между отдельными импульсами -- порядка 0,05 секунды, а продолжительность всей молнии составляет десятые доли секунды.

Каждый разряд начинается с лидера, т. е. с предварительного разряда, который как бы прокладывает канал молнии, увеличивая в нем плотность ионов и тем самым повышая его проводимость. Этот процесс происходит по типу электронной лавины. Относительно небольшое сначала число свободных электронов, распространяясь от облака (или соответствующей его части с большим отрицательным зарядом), ионизирует на своем пути молекулы воздуха. Вследствие этого создаются все новые свободные электроны, в свою очередь увеличивающие ионизацию канала. Сразу же после того, как канал проложен, по нему происходит сильный главный разряд. Повторные разряды бывают слабее.

При разрядах между облаками и землей (а к ним относится примерно 40% молний) к земле переносится преимущественно отрицательное электричество. Причина в том, что в нижней части грозового облака обычно накапливаются отрицательные заряды, а земная поверхность под облаком заряжается при этом положительно путем индукции. При грозовом разряде происходит, таким образом, пополнение общего отрицательного заряда земной поверхности.

Шаровая молния. Огни Святого Эльма

Замечательно, но еще недостаточно объяснено явление шаровой молнии. Это светящийся шар диаметром в десятки сантиметров, перемещающийся вместе с ветром или вообще с током воздуха (если попадает внутрь помещения). При соприкосновении с наземными предметами он может взорваться, что сопровождается разрушениями и ожогами; бывают и человеческие жертвы. Имеется много еще гипотетических объяснений шаровой молнии. Возможно, что она возникает в раскаленном воздухе канала обычной молнии и состоит из неустойчивых соединений азота и кислорода, образование которых сопровождается поглощением большого количества тепла. При охлаждении до некоторой критической температуры вещество шаровой молнии мгновенно распадается на азот и кислород с выделением всей поглощенной энергии, что и создает взрыв.

При наличии достаточно больших разностей потенциалов в атмосфере, кроме искровых разрядов, наблюдается истечение электричества с остроконечных предметов (с остриев), которое иногда сопровождается свечением. Эти тихие (или сопровождающиеся слабым треском) разряды называют огнями Святого Эльма. Они могут наблюдаться и в отсутствии грозовых облаков, особенно при метелях и пыльных бурях, наиболее часто в горах. Объясняются они следующим образом.

Если напряженность поля вообще велика, то над выдающимися и остроконечными предметами она может стать еще значительно большей. Тогда непосредственно возле остриев могут создаваться такие значения напряженности, которые приближаются к критическому. Воздух в непосредственной близости к остриям становится проводящим, и с остриев происходит заметное истечение электричества. При особенно сильной напряженности это истечение становится видимым, как светящиеся нити, кистями расходящиеся от острия вверх (кистевые разряды).

31. Характеристики режима осадков

Измерение осадков на метеорологических станциях производится простыми приборами -- дождемерами (осадкомерами). Они собирают осадки, выпадающие на верхнюю, открытую (приемную) поверхность сосуда (ведра) определенной площади. Количество накопленных осадков измеряется особым градуированным стаканом, который показывает толщину слоя выпавших осадков в миллиметрах.

В зимнее время точность показаний дождемера недостаточна. Турбулентные завихрения, образующиеся около прибора, могут препятствовать попаданию снежинок в дождемерное ведро или даже «выдувать» снег из него. С другой стороны, при ветре в ведро может попадать снег, поднятый с поверхности снежного покрова. Для уменьшения выдувания осадков из дождемера применяются различные защиты, окружающие дождемерное ведро.

Существуют и самопишущие приборы -- плювиографы, непрерывно регистрирующие прирост осадков, а также суммарные дождемеры, приспособленные для накопления осадков в течение длительного времени.

Таким образом, количество осадков, выпавших в том или ином месте за определенное время, выражается в миллиметрах слоя выпавшей воды. Утверждение, что выпало 68 мм осадков, означает, что если бы вода осадков не стекала, не испарялась и не впитывалась почвой, она покрыла бы подстилающую поверхность слоем толщиной 68 мм.

Твердые осадки (снег и др.) также выражают толщиной слоя воды, который они образовали бы растаяв.

Одному миллиметру осадков соответствует объем выпавшей воды в количестве одного литра на один квадратный метр, или одного миллиона литров на один квадратный километр. В весовых единицах это с достаточной точностью равно одному килограмму на квадратный метр, или 1000 тонн на квадратный километр.

Для характеристики климата подсчитывают многолетние средние количества (суммы) осадков по месяцам и за год. Иногда подсчитывают осадки по десятидневкам или пятидневкам. Для выяснения суточного хода осадков определяют их средние часовые суммы по записям самописцев. По многолетним средним месячным суммам осадков определяют их годовой ход.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.