RSS    

   Теория процентов

p align="left">И все же понимание сложных процентов может помочь людям вычислить доход от сбережений и инвестиций так же, как и цену займа. Эти вычисления применимы почти к любому финансовому решению -- от реинвестирования дивидендов до покупки облигации с нулевым купоном для индивидуального пенсионного счета.

Проще говоря, сложные проценты -- это начисление «процентов на проценты». Проценты, начисленные по истечении определенного периода, например года, добавляются к основной сумме и включаются в ту сумму, на которую в следующий период будут начисляться проценты.

Ричард П. Бриф, профессор бизнеса Нью-Йоркского университета, считает, что «вычисление [сложных процентов] должно быть понятно большинству людей» [12. с. 210-220].

Метод сложных процентов интриговал людей всегда. В начале прошлого века английский астроном Фрэнсис Бейли подсчитал, что британский пенс, инвестированный под 5% годовых на условиях сложных процентов в год рождения Христа, принес бы к 1810 г. столько золота, что его хватило бы для заполнения 357 млн. земных шаров. Бенджамин Франклин был более практичен. После своей смерти в 1790 г. он оставил по 1000 фунтов двум городам -- Бостону и Филадельфии с условием, что они не будут трогать эти деньги в течение 100 лет. Наследство Бостона, эквивалентное примерно 4600 долл., к 1890 г. увеличилось до 332000 долл.

Но делающим сбережения лицам и инвесторам не нужно жить до 100 лет, чтобы получить выгоды [10. с. 114-123].

Рассмотрим инвестирование с текущей стоимостью в 10000 долл., на которые ежегодно начисляется 8%. После первого года размер их возрастет до 10800 долл. (1,08 х 10000). После второго года они будут стоить 11664 долл. (1,08 х 10800). Еще через три года сумма возрастет до 14693 долл. Такая же концепция применима к потребительским кредитам. Ссуда в 10000 долл. под 8 сложных процентов, начисляемых раз в год, будет оцениваться в 14693 долл. (сумма, которую необходимо возвратить) через 5 лет [12. с. 210-220].

Инвесторы и делающие сбережения лица могут также использовать упрощенное эмпирическое правило для определения того, как долго нужно ждать удвоения суммы денег при данной процентной ставке с начислением процентов раз в год: разделите 72 на ставку процента. Например, инвестиции в 10000 долл., приносящие доход в 8% в год, удвоились бы через 9 лет (72:8).

Но следовало бы знать, что инфляция тоже развивается по принципу сложного процента. Пока инфляция не исчезнет, эти планируемые 20000 долл. через 9 лет будут стоить несколько меньше, чем они стоят теперь[10. с. 114-123].

Когда проценты выплачиваются ежегодно, вычисления по методу сложных и простых процентов приведут к одинаковому результату; в этом случае объявленная ставка процента и действительная ставка будут равны. Данные табл. 1 могут быть использованы для иллюстрации метода вычисления сложных процентов. В этом случае процентный доход, получаемый каждый год, остается на депозите, а не изымается. 50 долл., полученных с 1000 долл. в виде процентов за 1989 г., становятся частью остатка, на который выплачиваются проценты в 1990 г., и т.д.

Следует обратить внимание на то, что в процессе вычисления сложных процентов используется и метод простых процентов, т.е. проценты рассчитываются только на фактическую сумму за фактический период, в течение которого она находилась на депозите [6. с. 65-78].

Таблица 1. Данные об остатках сберегательного счета (при годовом начислении и реинвестировании по ставке 5%)

Дата

(1)

Вклад (или изъятие) (в долл.)

(2)

Остаток на счете на начало периода (в долл.)

(3)

Проценты за год (в долл.)

(4)

(2+З)

Остаток на счете на конец периода (в долл.)

1 янв. 1989 г.

1000

1000,00

50,00

1050,00

1 янв. 1990 г.

(300)

750,00

37,50

787,50

1 янв. 1991 г.

1000

1787,50

89,38

1876,88

Таблица 2. Данные об остатках сберегательного счета (при полугодовом начислении и реинвестировании по ставке 5%)

Дата

(1)

Вклад (или изъятие) (в долл.)

(2)

Остаток на счете на начало периода (в долл.)

(3)

Проценты за год (в долл.)

(4)

(2)+(3)

Остаток на счете на конец периода (в долл.)

1 янв. 1989 г.

1000

1000,00

25,00

1025,00

7 янв. 1989г.

1025,00

25,63

1050,63

1 янв. 1990 г.

(300)

750,63

18,77

769,40

7 янв. 1990г.

769,40

19,24

788,64

1 янв. 1991 г.

1000

1788,64

44,72

1833,36

7 янв. 1991 г.

1833,36

45,83

1879,19

Когда используется метод сложных процентов, объявленная и действительная ставки процента равны только в том случае, если процент выплачивается один раз в год. В общем, чем чаще выплачиваются проценты по объявленной ставке, тем выше будет действительная ставка процента. Вычисления процентов на основе данных о вкладах из табл. 1 включены в табл. 2; здесь предполагается, что проценты начисляются каждые полгода (дважды в год). Сумма процентов за каждый шестимесячный период находится умножением остатка за 6 месяцев на половину установленной ставки в 5% (см. столбец 3 табл. 2) [10. с. 114-123].

Сравнивая остаток на счете на конец 1991 г. в 1876,88 долл., подсчитанный в табл. 1 при норме в 5% с ежегодным начислением, с остатком на счете на конец 1991 г. в 1879,19 долл., подсчитанным в табл. 2 при норме в 5% с начислением раз в полгода, мы можем обнаружить, что более высокие доходы связаны с тем, что проценты начисляются чаще. Ясно, что в случае начисления процентов раз в полгода действительная ставка процента выше, чем 5% при начислении раз в год. Используя технику, которая в данном тексте не рассматривается, мы получим действительную ставку процента на вклады из табл. 2 в 5,063%. Сводка действительных ставок процента, связанных с объявленной 5%-й ставкой и различными периодами начисления (число процентных периодов), представлена в табл. 3.

Таблица 3. Действительная ставка процента для периодов начисления разной продолжительности (при объявленной ставке 5%)

Период начисления процентов

Действительная ставка процента

Ежегодно

5,000

Каждые полгода

5,063

Ежеквартально

5,094

Ежемесячно

5,120

Еженедельно

5,125

Непрерывно

5,127

Непрерывное начисление процентов, которое представляет собой начисление в течение самого короткого из возможных промежутка времени, позволяет получить максимальную норму доходности при данной объявленной ставке процента. Из табл. 3 очевидно, что, чем чаще начисляется процент, тем выше действительная ставка. Из-за того влияния, которое оказывает на доход разница в продолжительности периодов начисления процентов, инвестору следовало бы оценивать действительную ставку процента, связанную с различными альтернативами, до того, как сделать выбор [12. с. 210-220].

2. Будущая и приведенная стоимость: развитие концепции сложных процентов

Будущая стоимость -- это сумма, до которой возрастет текущий вклад за период с момента его помещения на счет, по которому начисляются сложные проценты (будущую стоимость иногда называют наращенной стоимостью). Возьмем депозит в 1000 долл., приносящий ежегодно 8%, рассчитанных методом сложных процентов. Чтобы найти будущую стоимость этого вклада в конце года, следует проделать такие вычисления:

Страницы: 1, 2, 3, 4, 5, 6


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.