Вирусы и бактерии. Проблемы СПИДа
2.1 Строение
Строение типичной бактериальной клетки показано на рисунке 1. На рисунке 2
представлена электронная микрофотография среза палочковидной бактерии.
Можно видеть, насколько просто устроена бактериальная клетка, особенно если
сравнить ее с клетками эукариот.
Капсулы и слизистые слои
Капсулы и слизистые слои – это слизистые или клейкие выделения некоторых
бактерий; такие выделения хорошо видны после негативного контрастирования
(когда окрашивают не препарат, а фон). Капсула представляет собой
относительно толстое и компактное образование, а слизистый слой намного
рыхлее. В некоторых случаях слизь служит для формирования колоний из
отдельных клеток. И капсула, и слизистые слои служат дополнительной защитой
для клеток. Так, например, инкапсулированные штаммы пневмококков свободно
размножаются в организме человека и вызывают воспаление легких,а
некапсулированные штаммы легко атакуются и уничтожаются фагоцитами и
поэтому совершенно безвредны.
Клеточная стенка
Клеточная стенка придает клетке определенную форму и жесткость. Ее хорошо
видно на срезе ( рис. 2 ). Как и у растений, клеточная стенка бактерий
препятствует осмотическому набуханию и зазрыву клеток, когда они, как это
часто случается, попадают в гипотоническую. Вода, другие малые молекулы и
разные ионы легко проникают через крошечные поры в клеточной стенке, но
через них не проходят крупные молекулы белков и нуклеиновых кислот. Кроме
того, клеточная стенка обладает антигенными свойствами, которые ей придают
содержащиеся в ней белки и полисахариды.
По строению клеточной стенки бактерии можно разделить на две группы. Одни
окрашиваются по Граму, поэтому их называют грамположительными, а другие
обесцвечиваются при отмывке красителя, и поэтому их называют
грамотрицательными. В клеточной стенке и тех и других есть особая жесткая
решетка, состоящая из муреина. Молекула муреина представляет собой
правмльную сеть из параллельно расположенных пролисахаридных цепей, сшитых
друг с другом короткими цепями пептидов. Таким образом, каждая клетка
окружена сетевидным мешком, составленным из одной молукулы.
У грамположительных бактерий, например у Lactobacillus , в муреиновую сетку
встроены другие веществ, главным образом полисахариды и белки. Так вокруг
клетки создается сравнительно толстая и жесткая упаковка. У
грамотрицательных бактерий, скажем у Escherichia coli или у Azotobacter,
клеточная стенка гораздо тоньше, но устроена она сложнее. Муреиновый слой у
этих бактериий снаружи покрыт мягким и гладким слоем липидов. Это защищает
их от лизоцима. Лизоцим обнаружен в слюне, слезах и других биологических
жидкостях, а также в белке куриного яйца. Он катализирует гидролиз
определенных связей между остатками углеводов и таким образом расщепляет
полисахаридную основу муреина. Клеточная стенка разрывается, и, если клетка
находится в гипотоническом растворе, происходит ее лизис (клетка
осмотически набухает и лопается). Липидный слой придает клетке устойчивость
и к пенициллину. Этот антибиотек препятствует образованию сшивок в
клеточной стенке грамположительных бактерий, что делает растущие клетки
более чувствительными к осмотическому шоку.
Жгутики
Многие бактерии подвижны, и эта подвижность обусловлена наличием у них
одного или нескольких жгутиков. Жгутики у бактерий устроены гораздо проще,
чем у эукариотов, и по своей структуре напоминают одну из микротрубочек
эукариотического жгутика. Жгутики состоят из одинаковых сферических
субъединиц белка флагеллина (похожего на мышечный актин), которые
расположены по спирали и образуют полный цилиндр диаметром около 10-20 нм.
Несмотря на волнистую форму жгутиков, они довольно жестки. Жгутики
приводятся в движение посредством уникального механизма. Основание жгутика,
по-видимому, вращается так, что жгутик как бы ввинчивается в среду, не
совершая беспорядочных биений, и таким образом продвигает клетку вперед.
Это, очевидно, единственная известная в природе структура, где используется
принцип колес. Другая интересная особенность жгутиков – это способность
отдельных субъединиц флагеллина спонтанно собираться в растворе в
спиральные нити. Спонтанная самосборка - очень важное свойство многих
сложных биологических структур. В данном случае самосборка целиком
обусловлена аминокислотной последовательностью (первичной структурой)
флагеллина.
Подвижный бактерии могут передвигаться в ответ на определенные
раздражители, т.е. они способны к таксису. Так, например, аэробные бактерии
обладают положительным аэротаксисом (т.е. плывут туда, где среда богаче
кислородом), а подвижные фотосинтезирующие бактерии - положительным
фототаксисом (т.е. плывут к свету).
Жгутики легче всего рассмотреть в электронном микроскопе (рис. 3), применив
технику напыления металлом.
Пили, или фимбрии
На клеточной стенке некоторых грамотрицательных бактерий видны тонкие
выросты (палочковидные белковые выступы), которые называются пили или
фимбрии (рис 3). Они короче и тоньше жгутиков и служат для прикрепления
клеток друг к другу или к какой-нибудь поверхности, придавая специфическую
«липкость» тем штаммам, которые ими обладают. Пили бывают разного
типа.Наиболее интересны так называемые F-пили, которые кодируются
специальной плазмидой и связаны с половым размножением бактерий.
Плазматическая мембрана, мезосомы и фотосинтетические мембраны
Как у всех клеток, протоплазма бактерий окружена полупроницаемой мембраной.
По структуре и функциям плазматические мембраны бактерий не отличаются от
мембран эукариотических клеток. У некотрых бактерий плазматическая мембрана
впячиваеися внутрь клетки и образует мезосомы и(или) фотосинтетические
мембраны. Мезосомы – складчатые мембранные структуры (рис. 1 и 2), на
поверхности которых находятся ферменты, участвующие в процессе дыхания.
Следовательно, мезосомы можно назвать примитивными органеллами. Во время
клеточного деления мезосомы связываются с ДНК, что, по-видимому, облегчает
разделение двух дочерних молекул ДНК после репликации и способствует
образованию перегородки между дочерними клетками. У фотосинтезирующих
бактерий и мешковидных, трубчатых или пластинчатых впячиваниях
плазматической мембраны находятся фотосинтетические пигменты (в том числе
бактериохлорофилл). Сходные мембранные образования участвуют в фиксации
азота.
Генетический материал
ДНК бактерий представлена одиночными кольцевыми молекулами длиной около 1
мм. Каждая такая молекула состоит примерно из 5(10^6 пар нуклеотидов.
Суммарное содержание ДНК (геном) в бактериальной клетке намного меньше ,
чем эукариотической, а следовательно, меньше и объем закодированной в ней
информации. В среднем такая ДНК содержит несколько тысяч генов, что
примерно в 500 раз меньше, чем в клетке человека. (рис. 1 )
Споры
Некоторые бактерии (в основном принадлежащие к роду Clostridium или
Bacillius) образуют эндоспоры, т.е. споры, находящиеся внутри клетки.
Эндоспоры – толстостенные долгоживущие образования, крайне устойчивые к
нагреванию и коротковолновому излучению. Они по-разному располагаются
внутри клетки, что служит очень важным признаком для идентификации и
систематики таких бактерий (рис. 4). Если покоящаяся, устойчивая структура
образуется из целой клетки, то она называется цистой. Цисты образуют
некоторые виды Azotobacter.
Форма клетки
Форма бактериальной клетки является одним из важнейших систематических
признаков. Четыре основных типа клеток изображены на рисунке 4. На этом же
рисунке указаны некоторые полезные и болезнетворные бактерии.
2.2 Размножение бактерий.
Большинство бактерий размножаются путём деления, которому пред
шествует рост бактерии, то есть увеличение массы её клетки. Обычно
палочковидные бактерии в длину увеличиваются в двое, и после дости
жения ими определённого размера посередине клетки возникает попереч-
ная перегородка, состоящая из цитоплазматической мембраны и клеточ
ной стенки. Такой способ деления называется поперечным. Образовавши
еся дочерние клетки по своим свойствам полностью подобны материнской
клетке, из которой они возникли.
Для того чтобы бактерии могли расти и размножатся, среда их обита
ния должна содержать необходимые источники углерода, азота, энергии,
определённой солевой набор, иметь оптимальную температуру. Для боль
шинства патогенных бактерий она равна 37.5.
В лабораторных условиях для выращивания бактерий используют ис
кусственные субстраты, так называемые питательные среды. Скорость
размножения бактерий в этих средах очень велика. Примерно каждые 20
минут бактерия делится, давая две дочерние клетки. Следовательно, из
одной клетки, культивируемой в хорошей питательной среде, через 10
часов образуется 1 млд. потомков. Если бы процесс размножения в пи
тательной среде не был ограничен, то через 24 часа число потомков
одной бактерии равнялось 105210 клеток, а их масса составила бы при
мерно 4000 тонн. В действительности же в питательной среде высокая
скорость деления клеток наблюдается лишь небольшой период времени с
момента внесения в неё бактерии. Это происходит потому, что очень