Шпаргалки по биологии
послезародышевого развития животных — прямое и непрямое:
1) прямое развитие — рождение потомства, внешне похожего на взрослый
организм. Примеры: развитие рыб, пресмыкающихся, птиц, млекопитающих,
некоторых видов насекомых. Так, малек рыбы похож на взрослую рыбу, утенок
на утку, котенок на кошку;
2) непрямое развитие — рождение или выход из яйца потомства,
отличающегося от взрослого организма по морфологическим признакам, образу
жизни (типу питания, характеру передвижения). Пример: из яиц майского жука
появляются червеобразные личинки, живут в почве и питаются корнями в
отличие от взрослого жука (живет на дереве, питается листьями).
Стадии непрямого развития насекомых: яйцо, личинка, куколка, взрослая
особь. Особенности жизни животных на стадии яйца и куколки — они
неподвижны. Активный образ жизни личинки и взрослого организма, разные
условия обитания, использование разной пищи.
Значение непрямого развития — ослабление конкуренции между родителями и
потомством, так как они поедают разную пищу, у них разные места обитания.
Непрямое развитие — важное приспособление, возникшее в процессе эволюции.
Оно способствует ослаблению борьбы за существование между родителями и
потомством, выживанию животных на ранних стадиях послезародышевого
развития.
2. Изучение Г. Менделем наследственности с помощью гибридологического
метода — скрещивания родительских форм, различающихся по определенным
признакам, и изучение характера их наследования в ряду поколений.
Скрещивание гомозиготной доминантной и рецессивной особей, появление в
первом гибридном поколении всех особей с доминантным признаком. Причина:
все гибридные особи имеют гетерозиготный генотип, например, Аа, в котором
доминантный ген подавляет рецессивный.
Проявление закона расщепления при скрещивании между собой гибридов
первого поколения АахАа. Дальнейшее размножение гибридов — причина
расщепления, появления в потомстве F^ особей с рецессивными признаками,
составляющих примерно четвертую часть от всего потомства.
Причины отсутствия расщепления во втором и последующих поколениях
гомозиготных рецессивных особей — образование гамет одного типа, наличие в
них лишь рецессивного гена, например, гамет с генами а. Слияние при
оплодотворении мужской и женской гамет с генами о и а — причина образования
гомозиготного потомства с рецессивным генотипом – аа.
Гомозиготы – организмы, содержащие в клетках два одинаковых гена по
данному признаку (АА либо аа), отсутствие у них расщепления признаков в
последующих поколениях. Гетерозиготы — организмы, содержащие в клетках
разные гены по какому-либо признаку (Аа), дающие расщепление признаков в
последующих поколениях.
3. Надо исходить из того, что ДНК жит матрицей для иРНК, она обеспечивает
последовательность нуклеотидов в иРНК. Двойная спираль ДНК с помощью
ферментов разъединяется, к одной ее цепи поступают нуклеотиды. На основе
принципа дополнительности нуклеотиды располагаются и фиксируются на
матрице ДНК в строго определенной последовательности. Так, нуклеотиду Ц
всегда присоединяется нуклеотид Г или наоборот: к Г — Ц, а к нуклеотиду А—У
(в РНК вместо тимина нуклеотид урацил). Затем нуклеотиды соединятся между
собой и молекула иРНК сходит с матрицы.
Билет № 16
1. Ген — отрезок молекулы ДНК, носитель наследственной информации о
первичной структуре одного белка. Локализация в одной молекуле ДНК
нескольких сотен генов. Каждая молекула ДНК — носитель наследственной
информации о первичной структуре сотен молекул белка.
Хромосома — важная составная часть ядра, состоящая из одной молекулы ДНК
в соединении с молекулами белка. Следовательно, хромосомы — носители
наследственной информации. Число, форма и размеры хромосом — главный
признак, генетический критерий вида. Изменение числа, формы или размера
хромосом — причина мутаций, которые часто вредны для организма.
Высокая активность деспирализованных хромосом в период интерфазы.
Самоудвоение молекул ДНК, их участие в синтезе иРНК, белка.
Ген (отрезок молекулы ДНК) — матрица для синтеза иРНК, а иРНК —
матрица для синтеза белка. Матричный характер реакций самоудвоения молекул
ДНК, синтеза иРНК, белка — основа передачи наследственной информации от
гена к признаку, который определяется молекулами белка. Многообразие
белков, их специфичность, многофункциональность — основа формирования
различных признаков у организма, реализация заложенной в генах
наследственной информации.
Самоудвоение хромосом, спирализация, четкий механизм их распределения
между дочерними клетками в процессе митоза — путь передачи наследственной
информации от материнской к дочерним клеткам.
Путь передачи наследственной информации от родителей потомству:
образование половых клеток с гаплоидным набором хромосом, оплодотворение,
образование зиготы — первой клетки дочернего организма с диплоидным набором
хромосом.
2. Многообразие видов растений, животных и других организмов, их
закономерное расселение в природе, возникновение в процессе эволюции
относительно постоянных природных комплексов.
Биогеоценоз (экосистема) — совокупность взаимосвязанных видов
(популяций разных видов), длительное время обитающих на определенной
территории с относительно однородными условиями. Лес, луг, водоем, степь —
примеры экосистем.
Автотрофный и гетеротрофный способы питания организмов, получения ими
энергии. Характер питания — основа связей между особями разных популяций в
биогеоценозе. Использование автотрофами (в основном растениями)
неорганических веществ и солнечной энергии, создание из них органических
веществ. Использование гетеротрофами (животными, большинством бактерий)
готовых органических веществ, синтезированных автотрофами, и заключенной в
них энергии.
Организмы — производители органического вещества, потребители и
разрушители — основные звенья биогеоценоза. 1) Организмы-производители —
автотрофы, в основном растения, создающие органические вещества из
неорганических с использованием энергии света; 2) организмы-потребители —
гетеротрофы, питаются готовыми органическими веществами и используют
заключенную в них энергию (животные, грибы, большинство бактерий); 3)
организмы-разрушители — гетеротрофы, питаются остатками растений и
животных, разрушают органические вещества до неорганических (бактерии,
грибы).
Взаимосвязь организмов производителей, потребителей, разрушителей в
биогеоценозе. Пищевые связи — основа круговорота веществ и превращения
энергии в биогеоценозе. Цепи питания — пути передачи вещества и энергии в
биогеоценозе. Пример: растения > растительноядное животное (заяц) > хищник
(волк). Звенья а цепи питания (трофические уровни): первое — растения,
второе — растительноядные животные, третьи — хищники.
Растения — начальное звено цепей питания благодаря их способности
создавать органические вещества из неорганических с использованием
солнечной энергии. Разветвленность цепей питания: особи одного трофического
уровня (производители) служат пищей для организмов нескольких видов другого
трофического уровня (потребителей).
Саморегуляция в биогеоценозах — поддержание численности особей каждого
вида на определенном, относительно постоянном уровне. Саморегуляция —
причина устойчивости биогеоценоза. Его зависимость от разнообразия
обитающих видов, многообразия цепей питания, полноты круговорота веществ и
превращения энергии.
3. Надо учитывать, что наследование признаков, контролируемых генами,
расположенными в Х-хро-мосоме, будет происходить иначе, чем контролируемых
генами, находящимися в аутосомах. Например, наследование гена гемофилии
связано с Х-хромосомой, в которой он расположен. Доминантный ген Н
обеспечивает свертываемость крови, а рецессивный ген h — несвертываемость.
Если женщина имеет в клетках два гена hh, то у нее проявляется болезнь,
если Hh — болезнь не проявляется, но она является носителем гена гемофилии.
У мужчин гемофилия проявляется при наличии одного гена и, так как у него
всего одна Х-хромо-сома.
Билет № 17..
1. Г. Мендель — основоположник генетики, которая изучает
наследственность и изменчивость организмов, их материальные основы.
Открытие Г. Менделем правила единообразия, законов расщепления и
независимого наследования. Проявление правила единообразия и закона
расщепления во всех видах скрещивания, а закона независимого наследования —
при дигибридном и полигибридном скрещивании.
Закон независимого наследования — каждая пара признаков наследуется
независимо от других пар и дает расщепление 3:1 по каждой паре (как и при
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15