Роль углеводов и жиров в повышении морозоустойчивости растений
коллоидами вода при действии низких температур не превращается в лёд. У
ряда древесных пород в результате превращения углеводов в древесине
накапливаются жиры, которые не замерзают и проявляют защитные действия в
зимний период.
Биосинтез липидов.
Липазы - ферменты из класса гидролаз, широко распространены в
растениях. Под их воздействием происходит гидролиз жиров до глицерина и
жирных кислот.
Схема превращения жиров в запасающих органах растения :
ГЛИЦЕРИН
ТРИОЗОФОСФАТЫ
ЖИРЫ
УГЛЕВОДЫ
ЖИРНЫЕ
КИСЛОТЫ АЦЕТИЛКОФЕРМЕНТ А
ЦИКЛ ДИ- И ТРИКАРБОНОВЫХ КИСЛОТ
CO2 и H20
Фермент липаза катализирует гидролиз жиров с присоединением воды до
свободных жирных кислот:
CH2 - O - OC - R1 CH2 - OH R1COOH
CH - O - OC - R2 + 3H2O ЛИПАЗА CH - OH +
R2COOH
CH2 - O - OC - R3 CH2 - OH R3COOH
ЖИР ГЛИЦЕРИН ЖИРНЫЕ
КИСЛОТЫ,
где R1, R2, R3 - радикалы высокомолекулярных жирных кислот.
Жирные кислоты подвергаются активации и окислению. В качестве
продукта реакции образуются молекулы ацетилкофермента-А, которые
вовлекаются в цмкл трикарбоновых кислот.
При созревании семян из сахаров, альдегидов, глицерина и жирных кислот
синтезируются жиры. Липазы также катализируют превращения липидов, входящих
в систему клеточных мембран, состоящих их двух слоёв липидов и двух
нелипидных слоёв.
Липоиды - это химически близкие к жирам вещества. У них обычно один
жирнокислотный остаток заменён другим веществом, например, гликолипиды, у
которых один остаток жирной кислоты замещён сахаром. Гликолипиды содержатся
в листьях. К липоидам относятся и фосфолипиды.
Липоиды входят в состав клеточных органоидов - митохондрий и пластид;
принимают участие в регуляции проницаемости клетки для поступающих в неё
веществ. Воска предохраняют листья, стебли и плоды от высыхания,
предупреждают смачивание водой, предохраняют от повреждения инфекционными
болезнями.
Учёные разработали теорию транспорта органических веществ, по которой
процесс передвижения органических веществ по ситовидным трубкам связан с
обменом веществ и использованием энергии дыхания (АТФ). Доказано, что
быстрое движение органических веществ сопровождается интенсивным дыханием.
У древесных растений важной потребляющей зоной является камбиальный слой
ствола ветвей, корней. Ежегодное утолщение стволов деревьев, образовывание
колец наглядно свидетельствует об этом. В годы обильного плодоношения
древесных пород в силу большого притока "органики" наблюдается ограничение
питания и уменьшение годичного прироста древесины.
Средняя скорость движения для различных веществ в растении может быть
такой (см в час): аминокислоты - 90, сахароза 70-80, неорганические соли 20-
40.
Таким образом, перемещение и транспортировка органических веществ в
растении - сложный физиологический процесс.
Механизм защитного действия липидов.
Он связан с регуляцией содержания воды в клетках. У морозоустойчивых
видов подготовка к зиме начинается заранее. Один из её этапов -
обезвоживание клеток. Жиры, накапливаясь в клетках, вытесняют из них воду.
Оставшаяся вода прочно связана с молекулами белков, углеводов и теряет
способность к кристаллизации. Поэтому у морозостойких видов кристаллы льда
в клетках кристаллы льда не образуются. При значительном понижении
температуры кристаллы льда начинают образовываться в межклетниках.
Кристаллы растут, оттягивая воду из клеток. Сильное обезвоживание тоже
вредно: оно приводит к разрушению структуры мембран, белков, нуклеиновых
кислот. Увеличение содержания жиров на поверхности протоплазмы препятствует
дальнейшему выходу воды из клеток и тем самым повышает устойчивость
растений к морозам. Морозостойкость связана с накопление в клетках не
только жиров: но и растворимых сахаров.
Опыты и наблюдения.
Опыт № 1 "Много ли питательных веществ в опавших листьях?"
Цель: убедиться в способности растений экономить питательные вещества с
помощью метода крахмальной пробы.
Оборудование и объекты: раствор Люголя, 50 мл 96 % этилового спирта, 30
зелёных листьев с верхушки побега и 30 жёлтых листьев с основания побега
тополя обыкновенного.
Ход опыта:
1. Дата проведения опыта 13.09.00. Сорвал с тополя обыкновенного по 30
листьев- зелёных с верхушки побега и жёлтых - с основания побега.
2. Прокипятил отдельно жёлтые и зелёные листья в воде до полного отмирания
клеток. Затем поместил в горячий спирт (на водяной бане) для удаления
пигментов.
3. Обесцвеченные листья обработал раствором Люголя.
4. Результаты опыта: зелёные листья под действием йода окрасились в синий
цвет, а жёлтые не изменили окраски.
Вывод: посинение листьев происходит в результате взаимодействия йода с
крахмалом, следовательно, жёлтые листья крахмала не содержат. Перед
листопадом крахмал превращается в растворимые сахара, которые по проводящим
пучкам перемещаются в запасающие органы: стебель и корень (древесные
растения), семена (травянистые одно- двухлетние). В клетках стебля и корня
из растворимых сахаров снова синтезируется крахмал.
Опыт № 2: "Судьба" запасного крахмала".
Цель: проследить за превращениями запасного крахмала в стеблях хвойных и
лиственных пород деревьев.
Оборудование и объекты: раствор Люголя, кусочки побегов ивы козьей, сирени
обыкновенной, лиственницы европейской, сосны обыкновенной.
Ход опыта:
1. Опыт начат 30.10.99 года, после окончания листопада.
2. Один раз в месяц срезал по 2 небольших побега ивы козьей, сирени
обыкновенной, лиственницы обыкновенной, сосны обыкновенной. Делал
продольный расщеп и с помощью раствора Люголя определял наличие крахмала.
3. Содержание крахмала выражал в баллах:
4 балла - иссиня-чёрный цвет (содержание крахмала высокое)
3 балла - тёмно-синий цвет (содержание крахмала среднее)
2 балла - светло-синий цвет (содержание крахмала низкое)
1 балл - голубой цвет (следы крахмала)
0 баллов - жёлтый цвет (крахмал отсутствует).
4. Результаты опытов занёс в таблицу:
Таблица № 1 "Изменение содержания крахмала в стеблях древесных пород"
|Дата |Содержание крахмала в баллах |
|проведения| |
|опыта | |
| |ива козья|Сирень |Лиственница |сосна |
| | |обыкновенная |обыкновенная |обыкновенная |
|30.10.99 |3 |4 |4 |4 |
|30.11.99 |2 |3 |3 |2 |
|30.12.99 |2 |2 |1 |1 |
|30.01.00 |1 |1 |0 |0 |
|30.02.00 |1 |1 |0 |0 |
|30.03.00 |2 |2 |1 |1 |
|30.04.00 |2 |3 |3 |3 |
Опыт проведён в трёх повторностях для получения более достоверного
результата.
Вывод: наблюдал колебание содержания крахмала, к середине зимы у сосны и
лиственницы крахмал почти исчез. Такие колебания связаны с распадом
крахмала и накоплением жиров в вакуолях клеток и в цитоплазме. Накопление
жиров в клетках позволяет растениям перезимовать. Эти процессы
усиливаются при наступлении сильных холодов. Повышение температуры
воздуха в конце зимы вызывает распад жиров и повторное накопление
крахмала. К началу сокоотделения и распускания почек запасной крахмал
окончательно распадается с образованием растворимых сахаров
У ивы и сирени пробы немного отличаются от проб на крахмал у
хвойных. Не наблюдается полного исчезновения крахмала к середине зимы,
так как он служит энергетическим материалом, за счёт которого растения
живут зимой. Он повышает устойчивость клеток к морозам. Поэтому в
зависимости от характера превращения крахмала древесные растения делят на
две группы: крахмалистые (куда вошли ива и сирень) маслянистые (хвойные).
Опыт № 3 "Повышение морозоустойчивости растений"
Цель: выяснить роль сахара в повышении морозоустойчивости тканей
корнеплода свёклы столовой.