RSS    

   Роль углеводов и жиров в повышении морозоустойчивости растений

откладываясь в самой цитоплазме, делает её несравненно более стойкой к

морозу и другим неблагоприятным воздействиям зимнего периода. Такую же роль

играют и другие откладываемые в вакуоли и протоплазме вещества - крахмал и

белки. Все они непосредственно защищают цитоплазму от мороза.

Однако морозостойкость растений нельзя объяснить только накоплением в

их клетках запасных питательных веществ. Исследования показали, что осенью

в процессе закаливания растения претерпевают и другие изменения. Особенно

большое значение имеет повышение водоудерживающей способности цитоплазмы.

Вода в ней становится как бы связанной. В таком состоянии она трудно

испаряется и замерзает, трудно отжимается под давлением, отличается большой

плотностью и утрачивает в значительной мере свойство растворителя. Вода

становится кристаллической по структуре, хотя и сохраняет жидкое состояние.

Между частичками цитоплазмы и водой устанавливается единство структуры. В

известной мере вода входит в состав макромолекул белков и нуклеиновых

кислот. Заморозить её в таком состоянии, то есть перевести в твёрдое тело,

практически невозможно. Такого рода изменения водных свойств цитоплазмы

особенно важны, именно они во многом определяют морозостойкость растений.

Морозостойкость зависит и от того, как растения провели вегетационный

период. Например, плодовые деревья, перенёсшие летом засуху, будут менее

морозостойки, чем деревья, выросшие в условиях обильного полива.

Позднелетняя подкормка также снижает морозостойкость.

Одна только способность переносить большие морозы ещё не позволяет

растениям существовать в условиях умеренного холодного пояса и в

приполярных районах. Значительно важнее зимостойкая способность видов, то

есть способность переживать в течение длительного времени ( иногда 8-9

месяцев в году) не только действие низких температур, но и выпревание,

вымокание, действие ледяной корки, а также частые смены температуры воздуха

- то оттепель, то замораживание и многое другое.

Растения по-разному приспосабливаются к переживанию этого периода.

Одни переносят зиму в состоянии органического и вынужденного покоя. У

других, помимо физиологических, появляется целый ряд анатомо-

морфологических особенностей: распластанные по земле стебли и листья,

горизонтальное нарастание побегов, подземное расположение узлов кущения и

корневых шеек, листопадность ( а у вечнозелёных - способность листьев

скручиваться и целый ряд других изменений, благодаря которым уменьшается

испаряющая поверхность), развитие мощного слоя пробки, белоствольность и

другие признаки, позволяющие избегать ожогов коры, почечные чешуи, их

тёмная окраска, кожистость - всё это прямо или косвенно помогает растениям

выжить зимой.

Биосинтез углеводов в зелёных растениях.

Физиологические и биохимические процессы в зелёном растении тесно

связаны с углеводами. Они составляют 75-80% сухого вещества тела

растительного организма и служат основным питательным и скелетным

материалами клеток и тканей растения.

Основной орган биосинтеза в растении - лист. Характерная его

особенность - сочетание фото- и биосинтезов. В листе происходит

трансформация энергии, обмен углеводов, аминокислот, белков, липидов,

нуклеиновых кислот, витаминов.

В прорастающих семенах и пробуждающихся почках происходят процессы

мобилизации запасных веществ. Наиболее характерная черта этих процессов -

распад сложных запасных веществ на более простые. Полисахариды распадаются

на моносахариды. Эти реакции происходят с присоединением воды и относятся к

типу гидролитических.

Крахмал состоит на 96,1-97,6 % из полисахаридов двух типов - амилозы

и аминопектина, различающихся своими физическими и химическими свойствами.

В крахмале содержится фосфорная кислота (до 0,7%) и некоторые

высокомолекулярные жирные кислоты (пальмитиновая, стеариновая и другие).

Крахмал - основное запасное вещество большинства растений. У

прорастающих семян под микроскопом можно наблюдать "разъедание" крахмальных

зёрен (см. рис. 1). Это процесс гидролитического распада полисахаридов на

моносахариды.

В быту известно явление, когда охлаждённый при 1-2 єС картофель

приобретает сладковатый вкус. У картофеля гидролиз крахмала происходит при

пониженной температуре, процесс дыхания при этом угнетается, вследствие

чего использование сахаров уменьшается. Таким образом, в клубнях

происходит односторонний процесс - гидролиз крахмала до гексоз и их

накопление.

Мучнистый вкус семян благодаря наличию большого количества крахмала

сменяется при прорастании сладковатым вследствие накопления в них глюкозы.

Превращение крахмала в сахар происходит под влиянием фермента

амилазы. Более обстоятельное изучение фермента амилазы показало, что это

смесь двух ферментов - ?- и ?-амилазы, которые действуют параллельно и

расщепляют гигантскую молекулу крахмала на более мелкие молекулы

полисахаридов, называемых декстринами, и дисахаридов, назвываемых мальтозы.

Количество амилазы в семени, находящемся в состоянии покоя,

незначительно, но с прорастанием с семени оно возрастает. Центром

образования амилазы, например, в зёрнах пшеницы или кукурузы является

зародыш, в частности его щиток, а также алейроновый слой, окружающий

эндосперм. Образующиеся ферменты ?- и ?-амилаза диффундируют в ткани

эндосперма и вызывают расщепление крахмала. Осахаривание крахмала в

эндосперме идут до конца только в том случае, когда он находится в тесном

контакте с молодым побегом, который непрерывно поглощает и использует

сахар, образующийся при гидролизе.

Гликозиды - сложные вещества, образующиеся из сахаров (в основном из

глюкозы) и одного или нескольких компонентов "несахаров" - агликонов.

К цианогенным гликозидам, содержащим синильную кислоту, относится

вицин семян с некоторых видов вики и фасоли. У белого клевера, сорго

содержится ряд цианогенных гликозидов, токсичных для животных. В растении

картофеля образуются ядовитые для человека и животных гликоалкалоиды -

гликозиды, у которых в качестве агликона входит алкалоидсоланидин. Эти

вещества, обладающие горьким вкусом, называются соланинами и чаконинами. В

картофельном растении клубни, а также стебли содержат меньше

гликоалкалоидов по сравнению с другими органами (молодыми листьями,

цветками, ягодами). Наибольшее количество гликоалкалоидов содержат ростки

(4-5 мг % массы сухого вещества). Молодые клубни картофеля содержат около

10 мг % гликоалкалоидов, а зрелые 2-4 мг %. При хранении клубней на свету

количество гликоалкалоидов значительно возрастает, особенно в позеленевших

участках, примыкающих к эпидермису. Установлено, что картофель с

содержанием гликоалкалоидов в количестве 20 мг % и более опасен для

потребления, особенно если клубни варились в кожуре.

Большинство красных, голубых и пурпурных пигментов клеточного сока

листьев лепестков цветков, плодов, корней, стеблей многих растений (

васильков, столовой свёклы, вишни, сливы, смородины, малины и других),

относится к группе веществ - антоцианам . Антоцианы - это

гетерогликозиды, образующиеся в растениях в результате взаимодействия

между сахарами и комплексными соединениями антоцианидинами ( агликоны).

Физиологическая роль гликозидов мало изучена, но их образование связано с

физиологической функцией сахаров в растениях; гликозиды считаются также

запасным материалом для синтеза сахаров и связанных с ними комплексов.

Роль углеводов в повышении морозоустойчивости растений.

Морозоустойчивость - способность растений переносить температуру ниже

0єС. Разные растения переносят зимние условия, находясь в различном

состоянии. У одноклеточных растений зимуют семена, нечувствительные к

морозам, у много летних - защищённые слоем земли и снега клубни , луковицы

и корневища, а также надземные древесные стебли. У озимых растений и

древесных пород ткани под воздействием морозов могут промёрзнуть насквозь,

однако растения не погибают. У них достаточно высокая морозоустойчивость.

Нечувствительность к морозам достигается физико-химическими

изменениями в клетках. В зимующих листьях и других частях растения

накапливается много сахара. Сахар является веществом, защищающим белковые

соединения от коагуляции при вымораживании, и поэтому его можно назвать

защитным. При наличии достаточного количества сахара в клетках повышаются

водоудерживающие силы коллоидов протопласта, увеличивается количество

прочно связанной и уменьшается содержание свободной воды. Связанная с

Страницы: 1, 2, 3, 4


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.