RSS    

   Рекомбинантные вакцины (Генная инженерия)

молекул ДНК (как векторной, так и содержащей интересующий нас фрагмент)

одной из эндонуклеаз рестрикции (рестриктаз). Рестриктазы характеризуются

исключительно высокой специфичностью. Они "узнают" в ДНК последовательность

из нескольких нуклеотидных остатков и расщепляют в них строго определенные

межнуклеотидные связи. Поэтому даже в ДНК больших размеров рестриктазы

вносят ограниченное число разрывов.

Третий способ представляет собой комбинацию двух первых, когда липкие

концы ДНК, образованные рестриктазой, удлиняются синтетическими

последовательностями (рис. 1).

Концы фрагментов ДНК можно превратить в "липкие", наращивая их

двутяжевыми олигонуклеотидами ("линкерами"), в состав которых входит

участок узнавания рестрикта-

[pic]

Рисунок 1. Схема конструирования рекомбинантной ДНК с помощью рестриктаз

PstI и поли(G)- поли(С)-линкера.

зой. Обработка такого фрагмента данной рестриктазой делает его пригодным

для встраивания в векторную молекулу ДНК, расщепленную той же рестриктаэой.

Часто в качестве "линкера" применяются полинуклеотидные фрагменты, которые

содержат специфические участки сразу для нескольких рестриктаз (их называют

"полилинкерами").

После встраивания чужеродной ДНК в вектор их ковалентное сшивание

осуществляется ДНК-лигазой. Если же размер бреши в рекомбинированной

молекуле превышает одну фосфодиэфирную связь, она застраивается in vitro с

помощью ДНК-полимеразы или in vivo с помощью репарирующих систем клетки.

1.2.2. ПОЛУЧЕНИЕ РЕКОМБИНАНТНЫХ РНК

Получение рекомбинантных РНК обычно осуществляют методами

ферментативного или химического лигирования РНК. Кроме того, недавно

появилась принципиально новая возможность встраивания сегмента РНК в

заданное положение других молекул РНК с помощью рибозимов.

Ковалентное сшивание отдельных сегментов РНК при получении

рекомбинантных молекул, как правило, осуществляют с помощью Т4 РНК-лигазы.

Т4 РНК-лигаза закодирована в геноме бактериофага Т4. Ее выделяют из клеток

E.coli, зараженных этим фагом. Фермент сшивает друг с другом однотяжевые

олиго- и полирибонуклеотиды. Для работы Т4 РНК-лигазы необходим источник

энергии - аденозинтрифосфат. На рис. 2 приведена схема ферментативного

лигирования двух коротких олигонуклеотидов. Как видно из этой схемы,

акцептором в реакции лигирования служит полностью дефосфорилированный, а

донором - полностью фосфорилированный по концевым нуклеотидным остаткам

олигонуклеотид. Это предотвращает возможность сшивания однотипных

олигонуклеотидов.

Эффективность ферментативного лигирования достаточно длинных

полирибонуклеотидов сильно варьирует и ее трудно предсказать исходя только

из нуклеотидной последовательности сегментов РНК. Наилучшие результаты

получены в тех случаях, когда сшиваемые концы полирибонуклеотидов были

пространственно сближены за счет комплементарного связывания соседних с

ними участков РНК.

Недавно было установлено, что протяженные сегменты РНК (длиной в 200-

300 остатков) могут быть с высоким выходом сшиты Т4 ДНК-лигазой. При этом

"стыковка" сегментов осуществляется с помощью олигодезоксирибонуклеотида,

комплементарного 3'-концу одного сегмента и 5'-концу другого.

Метод химического лигирования основан на активации концевой фосфатной

группы одного из двух сшиваемых сегментов РНК водорастворимым

карбодиимидом или

[pic]

Рисунок 2. Схема сшивания двух олигорибонуклеотидов с помощью Т4 РНК-

лигазы.

BrCN. В случае BrCN реакция протекает очень быстро и не сопровождается

модификацией нуклеотидных остатков, хотя под действием карбодиимидов

фосфодиэфирная связь образуется с более высоким выходом. Для того, чтобы

обеспечить сближенность сшиваемых концевых нуклеотидных остатков в

фрагментах РНК, было предложено использовать олигодезоксирибонуклеотиды,

комплементарные обоим фрагментам в месте их стыка.

Химическое лигирование РНК, как правило, проходит с существенно

меньшим выходом, чем ферментативное. Однако оно позволяет получать

рекомбинантные РНК с необычными типами межнуклеотидной связи (например,

пирофосфатной) и необычными нуклеотидными остатками в месте стыка двух

фрагментов.

Получение рекомбинантных РНК с помощью рибозимов основано на

обратимости реакции самосплайсинга (при отсутствии гуанозина или гуаниловых

нуклеотидов). Это предоставляет возможность для встраивания интронной РНК в

заданный участок другого сегмента РНК (рис. 3). Фрагмент РНК, в который

производится встраивание, должен содержать нуклеотидную последовательность,

идентичную нуклеотидной последовательности 3'-концевого участка 5'-

экзонного района 26S РНК и соответственно комплементарную той нуклеотидной

последовательности в интроне, которая отвечает за специфичность прямой

реакции. Фрагмент, в который производится встраивание, берется в избытке.

В настоящее время описанная здесь цепь реакций может быть реализована

только для интронной РНК, получаемой из предшественника 26S РНК

тетрахимены. Однако можно думать, что конструирование новых рибозимов может

существенно расширить возможности этого подхода.

1.2.3. СТРАТЕГИЯ КЛОНИРОВАНИЯ ГЕНОВ

Векторные молекулы в обязательном порядке содержат маркерные гены,

которые после переноса вектора в клетки-реципиенты сообщают им новые

свойства. Это может быть устойчивость к антибиотику, которой до

трансформации клетки не обладали, или образование фермента, синтез которого

в клетках-реципиентах не происходил. Благодаря таким вновь приобретенным

признакам клетки с векторными ДНК могут быть легко найдены в популяции

исходных клеток. Одновременно могут быть отобраны те клетки, которые

содержат векторы со встроенными в них чужеродными ДНК (рекомбинантные ДНК).

Для этого встраивание чужеродной ДНК в вектор производится таким образом,

чтобы один из маркерных признаков вектора нарушался. Так, например, если

бактериальный вектор несет устойчивость к двум антибиотикам, то чужеродную

ДНК встраивают в один

[pic]

Рисунок 3. Схема прямого и обращенного процесса самосплайсинга.

из генов антибиотической устойчивости. И тогда бактерии с рекомбинантной

ДНК, в отличие от бактерий с исходным вектором, могут расти в присутствии

только одного из антибиотиков.

Другой весьма распространенный пример связан с наличием в векторной

ДНК наряду с генами, сообщающими клетке устойчивость к антибиотикам,

фрагмента лактозного оперона, обеспечивающего образование в клетках-

реципиентах активного фермента (-галактозидазы. Колонии клеток с таким

признаком легко обнаруживаются при выращивании их на твердом агаре,

содержащем в качестве субстрата (-галактозидазы 5-бром-4-хлор-3-индолил-(-

галактозид (X-gal), поскольку его расщепление приводит к образованию

бромхлориндола - красителя, окрашенного в голубой цвет. Если же в ген (-

галактозидазы этого вектора встроена чужеродная ДНК таким образом, что этот

ген оказался нарушенным, то трансформированные им клетки будут образовывать

бесцветные колонии. Само же присутствие рекомбинантного вектора в клетках

может быть зафиксировано по их устойчивости к антибиотику.

На следующем этапе среди популяции клеток с рекомбинантными векторами

необходимо отобрать индивидуальные клоны, содержащие только интересующие

нас гены или их фрагменты. Само собой разумеется, что это в принципе

возможно только в том случае, если в исходные клетки проникло в среднем по

одной молекуле рекомбинантной ДНК. Способ же отбора клонов в значительной

степени зависит от природы клонируемого гена.

По-видимому, самым простым является случай, когда клонируемый ген

способен комплементировать ауксотрофную мутацию в штамме-реципиенте. В этом

случае клетки высеваются на среду, лишенную вещества, необходимого для

роста данного штамма, и только клетки, содержащие рекомбинантную ДНК с

искомым геном, способны расти на этой среде. Из таких клонов получают

гомогенную культуру клеток, которую используют для получения искомого

сегмента ДНК, проделывая все операции в обратном порядке (то есть из клеток

выделяют вектор, из него вычленяют необходимый фрагмент ДНК и так далее).

Гораздо чаще для отбора необходимых клонов приходится прибегать к

методу ДНК-ДНК- или ДНК-РНК-гибридизации. Для этого необходимо располагать

"зондами" (индивидуальными молекулами ДНК или РНК или их фрагментами),

комплементарными нуклеотидной последовательности клонируемого гена. Это

могут быть специально синтезированные олигодезоксирибонуклеотиды длиной в

15-20 остатков, последовательность которых выбрана на основании полностью

Страницы: 1, 2, 3, 4, 5


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.