RSS    

   Ответы на билеты по биологии 11 класс

1. Сцепление и кроссинговер. Кроссинговер как источник изменчивости.

Группы сцепления. Число генов у каждого организма, как мы уже отмечали,

гораздо больше числа хромосом. Следовательно, в одной хромосоме расположено

много генов. Как наследуются гены, расположенные в одной паре гомологичных

хромосом?

Большую работу по изучению наследования неаллельных генов, расположенных в

паре гомологичных хромосом, выполнили американский ученый Т. Морган и его

ученики. Ученые установили, что гены, расположенные в одной хромосоме,

наследуются совместно, или сцепленно. Группы генов, расположенные в одной

хромосоме, называют группами сцепления. Сцепленные гены расположены в

хромосоме в линейном порядке. Число групп сцепления у генетически хорошо

изученных объектов равно числу пар хромосом, т. е. гаплоидному числу

хромосом. У человека 23 пары хромосом и 23 группы сцепления, у гороха 7 пар

хромосом и 7 групп сцепления и т. д.

Сцепленное наследование и явление перекреста. Рассмотрим, какие типы гамет

будет производить особь, два гена которой находятся в одной хромосоме:------

(А)-----(В)------

------(а)------(b)------

Особь с таким генотипом производит два типа гамет: -----(а)----(b)----- и

-----(А)-----(B)----- в равных количествах, которые повторяют

комбинацию генов в хромосоме родителя. Было установлено, однако, что,

кроме таких обычных гамет, возникают и другие, новые

-----(А)-----(b)----- и -----(а)----(B)-----, с новыми комбинациями генов,

отличающимися от родительских хромосом. Было доказано, что причина

возникновения новых гамет заключается в перекресте гомологичных хромосом.

Гомологичные хромосомы в процессе мейоза перекрещиваются и обмениваются

участками. В результате этого возникают качественно новые хромосомы.

Частота перекреста между двумя сцепленными генами в одних случаях может

быть большой, в других — менее значительной. Это зависит от расстояния

между генами в хромосоме. Частота (процент) перекреста между двумя

неаллельными генами, расположенными в одной хромосоме, пропорциональна

расстоянию между ними. Чем ближе расположены гены в хромосоме, тем теснее

сцепление между ними и тем реже они разделяются при перекресте. И наоборот,

чем дальше гены отстоят друг от друга, тем слабее сцепление между ними и

тем чаще осуществляется перекрест. Следовательно, о расстоянии между генами

в хромосоме можно судить по частоте перекреста.

Итак, сцепление генов, локализованных в одной хромосоме, не бывает

абсолютным. Перекрест, происходящий между гомологичными хромосомами,

постоянно осуществляет «перетасовку» — рекомбинацию генов. Т. Морган и его

сотрудники показали, что, изучив явление сцепления и перекреста, можно

построить карты хромосом с нанесенным на них порядком расположения генов.

Карты, построенные по этому принципу, созданы для многих генетически хорошо

изученных объектов: кукурузы, мыши, дрожжей, гороха, пшеницы, томата,

плодовой мушки дрозофилы.

Как геологу или моряку совершенно необходима географическая карта, так и

генетику крайне необходима генетическая карта того объекта, с которым он

работает. В настоящее время создано несколько эффективных методов

построения генетических карт. В результате возникла возможность сравнивать

строение генома, т. е. совокупности всех генов гаплоидного набора хромосом,

у различных видов, что имеет важное значение для генетики, селекции, а

также эволюционных исследований.

2. Симбиотические отношения.

Лишайник всеми воспринимается как единый организм. На самом же деле он

состоит из гриба и водоросли. Основу его составляют переплетающиеся гифы

(нити) гриба. В рыхлом слое под поверхностью среди гиф гнездятся водоросли.

Чаще всего это одноклеточные зеленые водоросли. Совместное существование

выгодно и грибу, и водорослям. Гриб дает водорослям воду с растворенными

минеральными солями, а получает от водоросли органические соединения,

вырабатываемые ею в процессе фотосинтеза, главным образом углеводы. Симбиоз

так хорошо помогает лишайникам в борьбе за существование, что они способны

поселятся на песочных почвах, на бесплодных скалах, там, где другие

растения существовать не могут.

3. Основные биологические события палеозоя.

Палеозой

Кембрийский, ордовикский периоды- Процветание морских позвоночных, Широкое

распространение трилобитов, водорослей.

Силурийский- Развитие кораллов, трилобитов; по явление бесчелюстных

позвоночных. Выход растений на сушу.

Девонский- Появление кистеперых рыб, появление стегоцефалов.

Распространение на суше высших споровых растений.

Каменноугольный- Расцвет земноводных, возникновение пресмыкающихся,

появление членистоногих; уменьшение числа трибо-литов. Расцвет

папоротникообразны появление семенных папоротников.

Пермский- Развитие пресмыкающихся. Распространение голосеменных. Вымирание

трилобитов.

Билет №16

1. Мутации и наследственная изменчивость.

Мутации имеют ряд свойств.

1) возникают внезапно, и мутировать может любая часть генотипа;

2) чаще бывают рецессивными и реже — доминантными;

3) могут быть вредными (большинство мутаций), нейтральными и полезными

(очень редко) для организма;

4) передаются из поколения в поколение;

5) представляют собой стойкие изменения наследственного

материала;

6) это качественные изменения, которые, как правило, не образуют

непрерывного ряда вокруг средней величины при- g знака;

7) могут повторяться.

Мутации могут происходить под влиянием как внешних, так и внутренних

воздействий. Различают мутации генеративные — они возникают в гаметах, и

соматические — они возникают в соматических клетках и затрагивают лишь

часть тела; такие мутации будут передаваться следующим поколениям только

при вегетативном размножении.

По характеру изменений в генотипе мутации подразделяются на несколько

видов. Точечные, или генные мутации представляют собой изменения в

отдельных генах. Это может произойти при замене, выпадении или вставке

одного или нескольких нуклеотидов в молекуле ДНК.

Хромосомные мутации представляют собой изменения частей хромосом или целых

хромосом. Такие мутации могут происходить в результате делеции — утраты

части хромосомы, дупликации — удвоения какого-либо участка хромосомы,

инверсии — поворота участка хромосомы на 180°, транслокации — отрыва части

хромосомы и перемещения ее в новое положение, например, присоединения к

другой, негомологичной, хромосоме. Структурные хромосомные мутации, как

правило, вредны для организма.

Геномные мутации заключаются в изменении числа хромосом в гаплоидном

наборе. Это может происходить за счет уменьшения или увеличения числа

хромосом в гаплоидном наборе. Частный случай геномных, мутаций —

полиплоидия — увеличение числа хромосом в генотипе, кратное п. Это явление

возникает при нарушении веретена деления при мейозе или митозе. Полиплоиды

отличаются мощным ростом, большими размерами. Большинство культурных

растений полиплоиды. Тетероплоидия связана с недостатком или избытком

хромосом в одной гомологичной паре. Эти мутации вредны для организма;

примером может служить болезнь Дауна, при которой в 21-й паре появляется

лишняя хромосома.

Комбинативная изменчивость — также относится к наследственным формам

изменчивости. Она обусловлена перегруппировкой генов в процессе слияния

гамет и образования зиготы, то есть при половом процессе. Сходство между

комбинативной и мутационной изменчивостью заключается в том, что в обоих

случаях потомство получает набор генов каждого из родителей. Однако между

этими видами изменчивости есть принципиальные отличия.

При комбинативной изменчивости в результате слияния родительских гамет

возникают новые комбинации генов, однако сами гены и хромосомы остаются

неизменными.

При мутационной изменчивости обязательно происходит изменения в самом

генотипе: меняются отдельные гены, изменяется строение хромосом и их число.

Академик Н.И. Вавилов в течение многих лет исследовал закономерности

наследственной изменчивости у дикорастущих и культурных растений

различных систематических групп. Эти исследования позволили сформулировать

закон гомологических рядов наследственной изменчивости, или закон Вавилова.

Формулировка этого закона следующая: генетически близкие роды и виды

характеризуются сходными рядами наследственной изменчивости. Таким образом,

зная, какие мутационные изменения возникают у особей какого-либо вида,

можно предвидеть, что такие же мутации в сходных условиях будут возникать у

родственных видов и родов.

Н.И. Вавилов проследил изменчивость множества признаков у злаков. Из 38

различных признаков, характерных для всех растений этого семейства, у ржи

было обнаружено 37 признаков, у пшеницы — 37, у овса и ячменя — по 35, у

кукурузы — 32. Знание этого закона позволяет селекционерам заранее

предвидеть, какие признаки изменятся у того или иного вида в результате

воздействия на него мутагенных факторов.

2. Вымершие предки человека.

Австралопитек Рост 120—140 см; объем черепа 500—600 см3

Стадный образ жизни. Жили среди скал в открытых местах, употребляли мясную

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.