Общая биология
освобождающейся при химических реакциях. Первые называются
гелиотрофами, вторые – хемотрофами. К автотрофным организмам относятся
растения и некоторые бактерии.
Гетеротрофные организмы используют вещества производимые другими
видами. К гетеротрофам относятся все животные, паразитические
растения, большинство бактерий, грибы.
Различают два типа гетеротрофного питания: сапрофитное – питание
органическими веществами, образующимися при разложении тел организмов;
паразитное – питание органическими вест вами вырабатываемыми живыми
организмами.
В природе встречается и смешанный тип питания, который характерен
для некоторых бактерий, водорослей и простейших. Такие организмы
органические вещества своего тела могут синтезировать из готовых
органических веществ и из неорганических.
Объем веществ в клетке.
Объем веществ это процесс последовательного потребления,
превращения, использования , накопления потери веществ и энергии
позволяющий клетке самосохраняться, расти, развиваться и размножаться.
Обмен веществ состоит из непрерывно протекающих процессов ассимиляции
и диссимиляции.
Пластический обмен в клетке.
Пластический обмен в клетке это совокупность реакций ассимиляции,
т. е. превращение определенных веществ внутри клетки с момента их
поступления до образования конечных продуктов – белков, глюкозы, жиров
и пр. Для каждой группы живых организмов характерен особый,
генетически закрепленный тип пластического обмена.
Пластический обмен у животных. Животные являются гетеротрофными
организмами, т. е. они питаются пищей содержащей готовые органические
вещества. В кишечном тракте или кишечной полости они расщепляются:
белки до аминокислот, углеводы до моноз, жиры до жирных кислот и
глицерина. Продукты расщепления проникают в кровь и непосредственно в
клетки тела. В первом случае продукты расщепления опять таки
оказываются в клетках организма. В клетках происходит синтез веществ
характерный уже для данной клетки, т. е. формируется специфический
набор веществ. Из реакций пластического обмена простейшими являются
реакции обеспечивающие синтез белков. Синтез белка происходит на
рибосомах, согласно информации о структуре белка содержащийся в ДНК,
из аминокислот поступивших в клетку. Синтез ди-, полисахаридов идет из
моноз в аппарате Гольджи. Из глицерина и жирных кислот синтезируются
жиры. Все реакции синтеза идут с участием ферментов и нуждаются в
затрате энергии, энергию для реакций ассимиляции дает АТФ.
Пластический обмен в клетках растений имеет много общего с
пластическим обменом в клетках животных, но обладает определенной
специфичной связанной со способом питания растений. Растения это
аутотрофные организмы. Растительные клетки, содержащие хлоропласты,
способны синтезировать органические вещества из простых неорганических
соединений с использованием энергии света. Этот процесс известный под
названием фотосинтеза позволяет растениям с участием хлорофила из
шести молекул углекислого газа и шести молекул воды получать одну
молекулу глюкозы и шесть молекул кислорода. В дальнейшем
преобразование глюкозы идет по известному нам пути.
Метаболиты возникающие у растений в процессе обмена веществ дают
начало составным элементам белков – аминокислотам и жиров – глицерину
и жирным кислотам. Синтез белка у растений идет как и животных на
рибосомах, а синтез жиров на цитоплазме. Все реакции пластического
обмена у растений идут с участием ферментов и АТФ. В результате
пластического обмена образуются вещества обеспечивающие рост и
развитие клетки.
Энергетический обмен в клетке и его сущность.
Совокупность реакций диссимиляции, сопровождающихся выделением
энергии, называется энергетическим обменом. Наиболее энергетическими
веществами являются белки, жиры и углеводы.
Энергетический обмен начинается с изготовительного этапа, когда
белки распадаются на аминокислоты, жиры на глицерин и жирные кислоты,
полисахариды на моносахариды. Образующаяся энергия на этом этапе
незначительна и рассеивается в виде тепла. Из образовавшихся веществ
основным поставщиком является энергии глюкоза. Расщепление глюкозы в
клетке, в результате которого происходит синтез АТФ , происходит в две
стадии. Все начинается с бескислородного расщепления – гликолиза.
Вторую стадию называют кислородным расщеплением.
Гликолизом называют последовательность реакций, в результате
которых одна молекула глюкозы распадается на две молекулы
пировиноградной кислоты. Эти реакции протекают в основном веществе
цитоплазмы и не требуют присутствия кислорода. Процесс происходит в
два этапа. На первом этапе происходит превращение глюкозы в фруктозо
–1, 6,-бифосфат, а на втором - расщепление последнего на два
трехуглеродного сахара, которые позже превращаются в пировиноградную
кислоту. При этом на первом этапе в реакциях фосфорилирования
потребляются две молекулы АТФ. Таким образом чистый выход АТФ при
гликолизе составляет две молекулы АТФ. Кроме того, при гликолизе
освобождается четыре атома водорода.. Суммарную реакцию гликолиза
можно записать так:
CHO 2CHO + 4H + 2 АТФ
В дальнейшем при наличии кислорода пировиноградная кислота
переходит в митохондрии для полного окисления до СО и воды ( аэробное
дыхание ). Если кислорода нет, то она праевращается либо в этанол,
либо в молочную кислоту (анаэробное дыхание).
Кислородное расщепление (аэробное дыхание) происходит в
митохондриях, где под действием ферментов пировиноградная кислота
вступает в реакцию с водой и полностью распадается с образованием
углекислого газа и атомов водорода. Углекислый газ удаляется из
клетки. Атомы водорода попадают в мембрану митохондрий, где в
результате ферментативного процесса окисляются. Электроны и катионы
водорода с помощью молекул-переносчиков Транспортируются на
противоположные стороны мембраны: электроны на внутреннюю, протоны на
наружную. Электроны соединяются с кислородом. В результате этих
перестроек мембрана снаружи заряжается положительно, а изнутри
отрицательно. При достижении критического уровня разности потенциалов
на мембране положительно заряженные частицы проталкиваются через канал
в молекуле фермента встроенного в мембрану на внутреннюю сторону
мембраны, где соединяясь с кислородом образуют воду.
Процесс кислородного дыхания можно представить в виде следующего
уровня:
2СНО + 6О + 36АДФ + 36НРО 36АТФ + 6СО + 42НО.
А суммарное уравнение гликолиза и кислородного процесса выглядит
так:
СНО + 6О + 38АДФ + 38НРО 38АТФ + 6СО + 44НО
Таким образом, расщепление в клетке одной молекулы глюкозы до
углекислого газа и воды обеспечивает синтез 38 молекул АТФ.
Значит в процессе энергетического обмена образуется АТФ –
универсальный источник энергии в клетке.
Хемосинтез.
Каждый организм для поддержания жизни и осуществления процессов,
совокупность которых составляет обмен веществ, нуждается в постоянном
притоке энергии.
Процесс образования некоторыми микроорганизмами органических
веществ, из углекислого газа за счет энергии, получаемой при окислении
неорганических соединений (аммиака, водорода, соединений серы,
закисного железа) называется хемосинтезом.
В зависимости от минеральных соединений, в результате окисления
которых микроорганизмы, а это в основном бактерии, способны получать
энергию хемоавтотрофы делятся на нитрифицирующие, водородные,
серобактерии, железобактерии.
Нитрофицирующие бактерии окисляют аммиак до азотной кислоты. Этот
процесс идет в две фазы. Сначала идет окисление аммиака до азотной
кислоты:
2NH + 3O = 2HNO + 2HO + 660 кДж.
Затем азотистая кислота превращается в азотную:
2HNO + O = 2HNO + 158 кДж.
В сумме выделяется 818 кДж , которые используются для утилизации
углекислого газа.
У железобактерий окисление двухвалентного железа происходит
согласно уравнению
Поскольку реакция сопровождается малым выходом энергии (46,2*10
Дж/г окисленного железа), то для поддержания роста бактериям
приходится окислять весма большое количество железа.
При окислении одной молекулы сероводорода выделяется – 17,2*10
Дж., одной молекулы серы – 49,8*10 Дж., а одной молекулы - 88,6*10
Дж.
Процесс хемосинтеза был открыт в 1887 году С.Н. Виноградским. Это
открытие не только пролило свет на особенности обмена веществ у
бактерий, но и позволило определить значимость бактерий –
хемоавтотрофоф. Особенно это касается азотфиксирующих бактерий,
которые недоступный растениям азот превращают в аммиак, чем
способствуют повышению плодородия почвы. Стал понятен и процесс
участия бактерий в круговороте веществ в природе.
Размножение организмов.
Формы размножения организмов.
Способность размножаться, т.е. производить новое поколение того же
вида, одна из основных особенностей живых организмов.
Существует два основных типа размножения – бесполое и половое.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12