RSS    

   Реферат: Теория Рамсея

Затем Эрдёш применил тонкое доказательство от противного. Он предположил, что никакая схема раскраски не является успешной. Тогда мысленный эксперимент будет иметь нулевую вероятность успеха, что, как ему уже известно, не соответствует действительности. Значит, это предположение должно быть ошибочным, т.е. должна существовать успешная схема раскраски (не с вероятностью 99,9%, а с абсолютной достоверностью). Существование такой раскраски означает, что один миллион является нижней границей для 34 красных и 34 синих.

Такое рассуждение, известное как вероятностный метод, даёт наилучшие нижние оценки для чисел Рамсея. Однако этот метод не содержит никаких указаний на то, как в действительности следует производить желаемую раскраску. В попытках получить такие раскраски исследователи используют богатый арсенал приёмов из теории чисел, теории множеств и других разделов математики. Хотя полученные при этом результаты интересны, они пока не достигают оценок, которые даёт метод бросания монеты.

Значительная часть ранних исследований по теории Рамсея была посвящена множествам точек и линий, но всё же во многих из них рассматривались и множества чисел. Голландский математик Бартель Л.Ван дер Варден начал решать такие задачи ещё до того, как Рамсей доказал свою теорему.

В 1926 году Ван дер Варден встретился с интересной задачей, связанной с арифметическими прогрессиями. Как следует из самого названия, арифметическая прогрессия — это такая последовательность чисел, в которой разность между двумя соседними членами остаётся постоянной. Например, последовательность 3, 5, 7 есть трёхчленная арифметическая прогрессия, в которой разность между соседними членами равна двум. Частный случай задачи, привлёкшей внимание Ван дер Вардена, можно сформулировать так. Если каждое целое число от 1 до 9 напечатать на странице одной из двух красок, красной или синей, то всегда ли найдутся три синих или три красных числа, образующие арифметическую прогрессию? Ответ даётся в следующей врезке.

Теория Рамсея и арифметические прогрессии

Арифметическая прогрессия — это последовательность чисел, в которой разность между соседними членами остаётся постоянной. Например, 7, 10, 13, 16 — это арифметическая прогрессия, в которой разность между соседними членами равна трём. Из теории Рамсея следует такое утверждение об арифметических прогрессиях: если каждое число от 1 до 9 покрасить в красный или синий цвет, то либо три синих числа, либо три красных образуют арифметическую прогрессию.

Чтобы доказать это утверждение, мы могли бы проверить все 512 способов раскраски девяти чисел. Но мы можем доказать его, рассмотрев только два случая. Начнём со случая, в котором 4 и 6 имеют одинаковый цвет, скажем синий.

1  2  3  4  5  6  7  8  9

Чтобы избежать синей арифметической прогрессии 4, 5, 6, мы покрасим 5 в красный цвет.

1  2  3  4  5  6  7  8  9

Чтобы избежать синих арифметических прогрессий 2, 4, 6 и 4, 6, 8, мы покрасим 2 и 8 в красный цвет.

1  2  3  4  5  6  7  8  9

Но тогда у нас получится красная арифметическая прогрессия 2, 5, 8. Итак, если 4 и 6 имеют одинаковый цвет, то всегда получится либо красная, либо синяя арифметическая прогрессия. Теперь рассмотрим случай, когда 4 и 6 имеют различный цвет. Число 5 можно покрасить как угодно, не создав при этом арифметической прогрессии, так что мы произвольно покрасим 5 в красный цвет.

1  2  3  4  5  6  7  8  9

Продолжим раскрашивание следующим образом:

3, чтобы избежать 3 4 5

9, чтобы избежать 3 6 9

7, чтобы избежать 5 7 9

8, чтобы избежать 6 7 8

2, чтобы избежать 2 5 8

1, чтобы избежать 1 2 3

Такое раскрашивание даёт последовательность

1  2  3  4  5  6  7  8  9

Но в ней всё равно осталась красная арифметическая прогрессия 1, 5, 9. Таким образом, независимо от того, в одинаковый или в разные цвета окрашены 4 и 6, всегда имеется либо синяя, либо красная арифметическая прогрессия.

Ван дер Варден поставил перед собой следующую задачу, являющуюся обобщением предыдущей: доказать, что если n — достаточно большое число и все целые числа от 1 до n напечатаны на странице одним из двух произвольно выбираемых для каждой цифры цветов, то всегда существует одноцветная последовательность с определённым числом членов, являющаяся арифметической прогрессией. Это утверждение можно считать теоремой Рамсея для арифметических последовательностей, хотя оно общеизвестно под названием теоремы Ван дер Вардена.

Ван дер Варден призвал на помощь своих коллег Эмиля Артина и Отто Шрейера. Позднее он писал: «Мы пришли в кабинет Артина на факультет математики Гамбургского университета и попытались найти доказательство. Мы рисовали на доске какие-то рисунки. У нас было состояние, которое немцы называют Einfälle (озарение), когда в голову приходят неожиданные идеи. Несколько раз такие новые идеи направляли обсуждение в новое русло, и одна из них в конце концов привела к решению». Оказалось, однако, что Ван дер Варден не смог доказать этот результат для двух красок, не доказав его для случая, когда одновременно используется произвольное число красок.

В своём доказательстве Ван дер Варден применил особый вид математической индукции. Обычная (одинарная) индукция включает в себя два этапа. На первом этапе нужно показать, что утверждение выполняется для некоторого малого числа, скажем, для двух. На втором этапе доказывается, что если утверждение справедливо для какого-либо числа, то оно справедливо и для числа, на единицу большего. Отсюда следует, что оно верно для трёх, четырёх и так далее. Результаты «идут в руки» один за другим как бесконечная очередь падающих костяшек домино, поставленных на ребро: если столкнуть одну, то упадут все.

Чтобы доказать теорему Рамсея для арифметических прогрессий, Ван дер Варден применил более тонкую, двойную индукцию. Он предположил, что для любого фиксированного числа красок существует число n, такое, что если каждое целое число в интервале от одного до n напечатать какой-нибудь из этих красок, то найдётся арифметическая прогрессия чисел одного цвета, состоящая, скажем, из 10 членов. Опираясь на это допущение, он смог показать, что для любого фиксированного набора красок существует число m, такое, что если каждое целое число в интервале от 1 до m напечатать какой-нибудь из этих красок, то будет существовать одноцветная арифметическая прогрессия из 11 членов. В общем, он показал, что из результатов для k членов и любого количества красок вытекает результат для k+1 членов и любого количества красок.

После того как Ван дер Варден добрался до этой стадии доказательства, ему осталось только продемонстрировать, что его предположение действительно верно для некоторого малого значения k. Если целых чисел на единицу больше, чем красок, то всегда найдутся два числа одного цвета. Эти два числа образуют арифметическую прогрессию из двух членов. Поэтому одноцветная арифметическая прогрессия всегда существует, если чисел на единицу больше, чем красок. Бесконечная последовательность фишек домино для двух членов теперь сталкивает бесконечную последовательность домино для трёх членов, которая, в свою очередь, сталкивает бесконечную последовательность домино для четырёх членов, и так далее (см. следующую врезку).

Теория Рамсея и игра «крестики-нолики»

В 1926году Бартель Л. Ван дер Варден доказал, что если n — достаточно большое число и если все числа от 1 до n произвольным образом раскрасить каким-нибудь из двух цветов, то всегда найдётся одноцветная арифметическая прогрессия с определённым числом членов. В 1963году А.Хейлз и Р.Джуитт открыли то, что оказалось сутью теоремы Ван дер Вардена, изучая игру «крестики-нолики». Хотя классический вариант этой игры с игровым полем размером три на три может быстро наскучить, трёхмерный вариант с четырьмя полями в каждом ряду весьма интересен. «Доской» для трёхмерной игры служит куб, разбитый на 64 ячейки. Игроки по очереди заполняют ячейки крестиками или ноликами, пока один из них не выигрывает, заполнив четыре ячейки, расположенные на одной прямой. И двумерная, и трёхмерная игра порой кончается ничьей. А как обстоит дело в случае игр более высокой размерности? Можно ли гарантировать выигрыш в некотором n-мерном варианте крестиков и ноликов с k элементами на одной прямой?

Хейлз и Джуитт показали, что если размерность n достаточно велика, то всегда можно найти вариант игры с k элементами на одной прямой, который никогда не кончается ничьёй. Например, независимо от того, как расположены крестики и нолики в трёхмерной игре с тремя элементами в ряду, всегда либо три крестика будут расположены на одной прямой, либо три нолика.

Теорему Ван дер Вардена можно вывести из результата Хейлза и Джуитта, применив преобразование, переводящее прямые этой игры в арифметические прогрессии. Рассмотрим трёхмерную игру с тремя элементами в ряду.

Координаты крестиков в этой выигрышной комбинации суть 121, 222 и 323; рассматриваемые как числа, они образуют арифметическую прогрессию. Можно показать, что всякая выигрышная комбинация, преобразованная этим методом, даёт арифметическую прогрессию.

                   1           

1                                            

2   ×                                       

3                                            

     1            2            3           

                                 2              

1                                            

2                 ×                         

3                                            

     1            2            3           

                                 3              

1                                            

2                               ×           

3                                            

     1            2            3           

Доказав теорему Рамсея для арифметических прогрессий, Ван дер Варден применил эти знания к решению следующей задачи. Каково наименьшее значение n, гарантирующее существование одноцветной арифметической последовательности из, скажем, 10 членов, если каждое число от 1 до n напечатать любой произвольно выбранной из двух красок? Лучший ответ, который Ван дер Варден смог найти, выражался столь большим числом, что его невозможно было записать в обычном виде. Оно было больше миллиарда, больше чем 10 в степени миллиард.

В самом деле, чтобы выразить его результат, математики прибегают к последовательности функций, известной как иерархия Аккермана. Первая функция в этой иерархии называется просто DOUBLE(x). Как подсказывает название (double — значит, удвоить), эта функция удваивает значение x. Так DOUBLE(1) равно 2, DOUBLE(50) равно 100. Вторая функция, EXPONENT(x), может быть описана как 2 в степени x, и, следовательно, EXPONENT(3) равно 8. Можно также выразить EXPONENT через DOUBLE. Например, чтобы найти EXPONENT(3), мы удваиваем 1, затем удваиваем результат предыдущего действия и затем снова удваиваем результат. На самом деле любая функция в иерархии Аккермана определяется через предыдущую.

Итак, третью функцию этой иерархии, TOWER(x), можно выразить с помощью функции EXPONENT. TOWER(3), например, — это 2 в степени 2 в степени 2, что равно 2 в степени 4, т.е. 16. TOWER(x) иногда записывают в виде «башни» (tower — значит, башня) показателей степеней,

2...2

2 2

где x — число двоек в этой башне. Но даже функция TOWER(x) растёт недостаточно быстро, чтобы можно было записать результат Ван дер Вардена.

Следующую функцию, известную под шуточным прозвищем WOW(x) (английское междометие WOW примерно соответствует русским «Ой!», «Ах!» и «Ну и ну!». — Перев.), можно найти, если начать с 1 и применить x раз функцию TOWER. Тогда,

WOW(1) = TOWER(1) = 2,

WOW(2) = TOWER(2) = 4,

WOW(3) = TOWER(4) = 65536.

Чтобы найти WOW(4), нужно вычислить TOWER(65536). Чтобы это сделать, нужно начать с 1 и применить функцию EXPONENT 65536 раз. Даже применение функции EXPONENT всего лишь пять раз даёт 265536, — число, которое, будучи записанным цифра за цифрой, заполнило бы две страницы этого журнала. На самом деле даже число, заполняющее все страницы всех книг и всю память всех компьютеров, всё же останется несравнимым с WOW(4).

Тем не менее, чтобы всё-таки записать результат Ван дер Вардена, придётся определить функцию, которая растёт ещё быстрее. Функция ACKERMANN(x) определяется последовательностью DOUBLE(1), EXPONENT(2), TOWER(3), WOW(4) и так далее. ACKERMANN(x) в конце концов растёт быстрее любой функции в этой иерархии. Доказательство Ван дер Вардена даёт следующий количественный результат: если числа 1, 2, ..., ACKERMANN(k) раскрашены двумя красками, то всегда существует одноцветная арифметическая прогрессия длиной k.

Кажется странным, что такие чудовищные числа могут возникнуть из столь невинного утверждения, касающегося только арифметических прогрессий. Многие математики в течение многих лет пытались улучшить доказательство Ван дер Вардена. Неудача следовала за неудачей, и в результате стало укрепляться убеждение в том, что двойная индукция и соответственно функция ACKERMANN являются необходимыми компонентами любого доказательства теоремы Ван дер Вардена. Всё чаще логики пытались найти подтверждения тому, что так оно и есть на самом деле.

В 1987году, однако, израильский логик Саарон Шела из Еврейского университета в Иерусалиме добился крупного успеха. Шела широко признан как человек, лучше всех справляющийся с решением сложнейших задач в современной математике. Он сумел преодолеть барьер функции ACKERMANN и показал следующее: если целые числа от 1 до WOW(k) раскрасить в два цвета, то всегда найдётся одноцветная арифметическая прогрессия длиной k членов.

Несмотря на свою специализацию, Шела вовсе не использует в своём доказательстве каких-либо средств математической логики. В нём применены лишь элементарные (но чрезвычайно остроумные) математические идеи. Полностью выписанное, его доказательство занимает приблизительно четыре страницы, и большинство специалистов находит его более чётким, чем первоначальное доказательство Ван дер Вардена. Что самое важное, он обошёлся без двойной индукции. Он фиксирует число красок на двух (или любом другом конкретном значении) и затем проводит обычную индукцию: если утверждение верно для прогрессий длиной k членов, то оно также справедливо и для прогрессий длиной k+1.

Математики сейчас пытаются понять, можно ли улучшить доказательство Шелы, чтобы получить для теоремы Ван дер Вардена оценку порядка TOWER или даже EXPONENT. Один из нас (Грэм) предложил премию в размере 1000 долларов тому, кто докажет (или опровергнет) утверждение, что для всякого k раскрашенная в два цвета совокупность чисел от 1 до TOWER(k) содержит одноцветную арифметическую прогрессию из k членов.

Усилиями Рамсея, Эрдёша, Ван дер Вардена и многих других были заложены основы теории, носящей имя Рамсея. Пока что исследователи только начали изучать следствия этой теории. Она позволяет предположить, что структурная основа математики состоит из чрезвычайно больших чисел и множеств — объектов столь громадных, что их трудно даже выразить, а тем более постичь.

Когда мы научимся обращаться с этими большими числами, мы сможем найти математические соотношения, которые помогут инженерам создавать большие сети коммуникаций, а учёным распознавать упорядоченные структуры в крупномасштабных физических системах. Сегодня мы с лёгкостью прослеживаем в созвездиях на ночном небосводе следствие теории Рамсея. А какие структуры можно найти в множествах, размеры которых в ACKERMANN(9) раз больше?

Рис.4. Понятия теории Рамсея приложимы к геометрическим задачам вроде этой головоломки о шестиугольниках. Если длины всех сторон шестиугольников равны 0,45 единицы (единица длины может быть произвольной), то две точки внутри шестиугольника отстоят друг от друга самое большее на 0,9 единицы. Каждый шестиугольник окрашивается одним из семи цветов, так, что никакие два шестиугольника одного цвета не отстоят друг от друга меньше чем на 1,19 единицы. Никакие две точки одного цвета не находятся одна от другой на расстоянии, в точности равном единице. Пока что никто не смог определить, можно ли раскрасить плоскость шестью красками так, чтобы никакие две точки одного цвета не находились в точности на расстоянии одной единицы друг от друга.

Список литературы

1. A.M.Gleason and R.E.Greenwood. Combinatorial Relations and Cromatic Graphs. In: Canadian Journal of Mathematics, 1955, v.7, No.1, pp.1–7.

2. B.L. van der Waerden. How the Proof of Baudet's Conjecture Was Found. In: Studies in Pure Mathematics (Edited by L.Mirsky). Academic Press, Inc., 1971.

3. Paul Erdös: The Art of Counting: Selected Writings (Edited by Joel Spencer). The MIT Press, 1973.

4. Paul Hoffman. The Man Who Loves Only Numbers. In: Atlantic Monthly, 1987, v.260, No.5, pp.60–74.

5. R.L.Graham and V.Rödl. Numbers in Ramsey Theory, in Surveys and in Combinatorics. London Mathematical Society Lecture Notes Series, 1987, No.123, pp.111–153.

6. Ronald L.Graham, Bruce L.Rothschild and Joel H.Spencer. Ramsey Theory. Second Edition. John Wiley & Sons, Inc., 1990.


Страницы: 1, 2, 3


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.