RSS    

   Основы социальной информатики - (лекции)

p>Мы видим на этом примере, что классификация может проявить себя не только как инструмент организации научных знаний, но и как фактор социального порядка. Поэтому существующие системы тарифов и ставок, ученых степеней и званий, структура должностей и служебных постов в гражданской службе и армии играют не только организующую, но и стимулирующую роль. Подобная модель знаний получила в науке и практике название " иерархической". Ее достоинства в том, что она проста в освоении, легко поддерживается в рабочем состоянии (легко пополняется и "чистится"), эффективно решает задачу разнесения новых понятий по иерархическим уровням.

    Недостатки иерархической модели знаний:

- прямые связи между понятиями соседних уровней обозначены слабо, или вовсе отсутствуют;

- иерархическая классификация наиболее эффективна в тех случаях, когда при переходе от уровня к уровню работает один и тот же тип отношений, например, родо-видовой.

Систематика, лежащая в основе классификации может применяться как сильное средство направленного исследовательского поиска. Так, иногда оказывается полезным при рассмотрении группы объектов несколько каких-либо характерных для них признаков выделить в качестве определяющих и ввести некоторую меру степени проявления данных признаков. Такой подход называется морфологическим, так как использует идею разложения некоего объекта на его части (признаки). Часто подобная группировка приводит к выявлению закономерностей связывающих объекты каждой группы, которые до этого не были известны.

Благодаря такому подходу Д. И. Менделеев открыл знаменитый периодический закон. Подчеркивая доминирующую роль выделенного им признака он писал: ".... по смыслу всех точных сведений о явлениях природы масса вещества есть именно такое свойство его, от которого должны находиться в зависимости все остальные свойства .... Поэтому ближе или естественнее всего искать зависимости между свойствами и сходствами элементов, с одной стороны, и атомными их весами, с другой " .

Морфологический метод осуществляет как бы анатомическое исследование объектов, понятий, значений путем расчленения целого на характерные, существенные части. Его цель - выяснение роли частного в целостной картине, систематизация знаний о данной реальности, составление гипотез о возможных вариантах новых (еще не данных) знаний.

Упомянутые выше недостатки иерархической модели данных свойственны и морфологическим моделям. Их удается устранить используя так называемые ветвящиеся (древовидные) структуры (модели) представления знаний. Отдельные понятия, факты, знания, связаны между собой отношениями, выражающими суть имеющихся между ними связей. Как в иерархической модели это могут быть родо-видовые отношения, но так же и другие типы отношений: "быть представителем", "иметь", "наследовать" и т. п. Однозначность связей в древовидной структуре и разнообразие охватываемых ею отношений позволяет повысить "динамизм" системы знаний. Действительно, система знаний, представленных иерархической или морфологической моделями статична, или, как говорят, декларативна.

В древовидной структуре можно прослеживать восходящие и нисходящие ветви связей получая формулы дедуктивного (от частного к общему), индуктивного (от общего к частному) и индуктивно-дедуктивного выводов. Например: " растение может быть цветком по имени роза"; "роза - цветок, часть растения"; "роза - цветок, имеющий лепестки".

Благодаря такой организации представленные знания получают как дополнение к декларативности процедуральность, т. е. способность к выводу общих знаний из структуры отношений и понятий. Древовидная структура знаний, несмотря на простоту и распространенность в обиходе информационного обмена, все-таки довольно специфична. В ней, как и в предыдущей модели знаний, заложена парадигма иерархичности. В тоже время внутреннее "мироустройство" некоторой системы знаний может не соответствовать этой парадигме.

Рассмотрим в качестве примера понятие "трудовой коллектив". Совокупность знаний, описывающих конкретный трудовой коллектив, чрезвычайно разнообразна, или, как говорят, многоаспектна. Между аспектами часто не удается установить отношений иерархии (род-вид), хотя связь между ними имеет место. Вот один из возможных аспектов: все представители трудового коллектива могут быть включены по алфавиту в список с указанием против фамилии и имени каждого работника табельного номера, года рождения, образования, специальности, разряда, стажа работы и т. п. Назовем этот список - "Список 1".

Другой аспект: все члены коллектива работают на условиях сдельной оплаты и величина их заработка определяется на основе т. н. тарифной сетки. Поэтому, составив список специальностей и разрядов с указанием стоимости одного часа рабочего времени, мы формируем некоторое представление знаний о системе оплаты труда членов данного коллектива. Назовем этот список - "Список 2". Третий аспект: при начислении зарплаты каждому работнику мы должны учитывать его фактическую выработку на протяжении некоторого периода работы (например за месяц). Значит третий список, составляемый, скажем, мастером участка это список, состоящий из табельных номеров и фактически проработанного работником времени. Это - “Список 3”.

Понятно, что все три списка содержат необходимый объем знаний о трудовом коллективе, если речь идет о начислении заработной платы. Подобные модели представления знаний, состоящие из связанных друг с другом списочных структур, получили название реляционных [3 от англ. relation - связь]. В реляционных моделях удается представить более сложные области знаний. В них каждый из аспектов может рассматриваться как некоторый автономный блок внутри которого допускается производить изменения, не затрагивая других областей и не внося при этом противоречий в общую картину знаний. Удобным средством является комбинация устойчивых и изменяемых знаний. Так знания, выраженные Списком 2 длительно устойчивы. В Списке 1 представлены знания, которые могут меняться с течением времени- текучесть кадров, изменение квалификации и т. п. Список 3 обновляется каждый раз, когда возникает необходимость очередного расчета. Не вызывает принципиальных трудностей задача пополнения реляционной модели новыми знаниями путем расширения уже имеющихся списков и добавления новых списочных структур.

В приведенном примере мы рассмотрели лишь задачу определения величины заработка. Но, по-видимому ясно, что реляционные модели включающие достаточное по содержанию и количеству число списочных структур создают возможность для решения большого количества разнообразных задач каждая из которых является по существу задачей извлечения из общей суммы вложенных в модель знаний нужного конкретного знания по интересующему получателя вопросу.

Существуют и другие формализмы представления знаний, кроме перечисленных выше иерархических, морфологических, древовидных и реляционных моделей. Так, например, промежуточным между древовидной и реляционной моделью являются так называемые семантические сети. С их помощью между понятиями, фактами, знаниями устанавливаются связи - отношения. Они как бы являются обобщением древовидных моделей т. к. отличаются от последних снятием требований иерархичности. В то же время семантические сети могут считаться частным случаем реляционных моделей, т. к. именно из них могут быть построены связанные списочные структуры, когда понятие являющееся узлом семантической сети расширяется в список, а соответствующее отношение с другим списком из единичного становится групповым. Все описанные приемы формализации знаний направлены на создание некоторой устойчивой "несущей конструкции" на которую может быть одета оболочка системы конкретных знаний. В случае, если между отправителем и получателем знаний достигнуто понимание, взаимная договоренность относительно этой несущей конструкции, то информационный обмен приобретает необходимую регламентирующую основу, что решающим образом повышает его эффективность.

    Информационная технология.

Под традиционной информационной технологией, как правило, понимается информационная технология на базе “жестских алгоритмов”.

Под новой информационной технологией, как правило, понимается информационная технология на базе “мягких алгоритмов”, с использованием достижений искусственного интеллекта.

    Материя, энергия, информация, знания - связь понятий(2).

Исходной посылкой является утверждение, что информация является семантической сущностью материи. Понятие “материя” отождествляется с понятием “система”, в которую входят составными элементами - вещество, энергия, знания и информация. Эти элементы в соответствии с законом сохранения материи поддерживают систему в равновесном состоянии путем взаимных переходов из одной в другую субстанцию системы(рис. ниже). При взаимодействии этих элементов системы вещество выступает носителем знания, а энергия - носителем информации.

    М А Т Е Р И Я
    Вещество Энергия
    Знания Информация
    Информация, данные, знания - соотношение понятий.

Информация- всеобщее свойство материи, проявляющееся в кибернетических коммуникативных процессах.

Данные- это сведения, служащие для какого-либо вывода и возможного решения. Они могут храниться, передаваться, но не выступать в качестве информации. Знания- это результат познавательной деятельности, система приобретенных с ее помощью понятий о действительности.

    Соотношение понятий информация, данные, знания.

Может быть предложена следующая соответствующая логической связи указанных понятий образная цепочка[3] - зерно, мука, хлеб.

Информация всегда носит “транспортный” оттенок передачи знания по сетям связи , знание же всегда связано с личностью его создателя.

    Проблематика искусственного интеллекта.

Массовая информатизация общества невозможна без ЭВМ с интеллектуальным(дружественным) интерфейсом, базирующемся на достижениях искусственного интеллекта (ИИ).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.