RSS    

   Психофизиологические механизмы ощущений

p align="left">Рассмотренные закономерности раскрывают высокую динамичность ощущений, их зависимость от силы раздражителя, от функционального состояния анализаторной системы, вызванного началом или прекращением действия раздражителя, а также результатом одновременного воздействия нескольких раздражителей на один анализатор или смежные анализаторы.

Таким образом, можно отметить, что закономерности ощущений определяют условия, при которых стимул (раздражение) достигает сознания. Так биологически важные стимулы воздействуют на мозг при сниженных порогах и повышенной чувствительности, а стимулы, потерявшие биологическую значимость, - при более высоких порогах.

Глава 2. Современные концепции о физиологических механизмах, лежащих в основе ощущений

2.1 Представления о системном характере взаимодействия структур мозга в обеспечении ощущений

Системный принцип деятельности мозга -- это принцип изучения мозга как многоуровневой, иерархической организованной системы, состоящей из взаимосвязанных компонентов -- мозговых структур. Понимание физиологических основ психических процессов развивалось по двум направлениям: одно представляло психику как результат недифференцированной деятельности мозга, другое, основывающееся на экспериментальных данных о роли его различных структур в той или иной деятельности, подчеркивало локальный характер мозгового обеспечения психических процессов. Вместе с тем в отечественной физиологии, начиная с И.М. Сеченова, формировалось представление об интегративном системном характере деятельности мозга, в котором учитывалась и специфическая роль отдельных структур, и их динамическое взаимодействие в целостном функционировании мозга как базы психических процессов.

Положения о системной организации деятельности мозга получили продолжение в принципе доминанты А.А. Ухтомского и теории функциональных систем П.К. Анохина.

А.Р. Лурия предложил структурно-функциональную модель мозга как субстрата психической деятельности. Эта модель характеризует наиболее общие закономерности работы мозга как единого целого и позволяет объяснить его интегративную функцию. Согласно этой модели, весь мозг можно разделить на три структурно-функциональных блока: а) энергетический блок, б) блок приема, переработки и хранения экстероцептивной информации, в) блок программирования, регуляции и контроля сложных форм деятельности [9, с.248].

Анализ особенностей строения и функционирования трех функциональных блоков мозга позволяет предположить, что каждая форма сознательной деятельности всегда является сложной функциональной системой и осуществляется, опираясь на совместную работу всех трех блоков мозга, каждый из которых вносит свой вклад в обеспечение всего психического процесса в целом.

Классический вариант интегративной деятельности мозга может быть представлен в виде взаимодействия трех основных функциональных блоков: 1) блок приема и переработки сенсорной информации -- сенсорные системы (анализаторы); 2) блок активации нервной системы -- модулирующие системы (лимбико-ретикулярные системы) мозга; 3) блок программирования, запуска и контроля поведенческих актов -- моторные системы (двигательный анализатор) [13, с.318].

Первый функциональный блок составляют анализаторы, или сенсорные системы. Анализаторы выполняют функцию приема и переработки сигналов внешней и внутренней среды организма. Каждый анализатор настроен на определенную модальность сигнала и обеспечивает описание всей совокупности признаков воспринимаемых раздражителей. Модальная специфичность анализатора в первую очередь определяется особенностями функционирования его периферических образований и специфичностью рецепторных элементов. Однако в значительной степени она связана с особенностями структурной организации центральных отделов анализатора, упорядоченностью межнейронных связей всех морфологических образований от рецепторного уровня до коркового конца (проекционных зон).

Анализатор - это многоуровневая система с иерархическим принципом ее конструкции. Основанием анализатора служит рецепторная поверхность, а вершиной - проекционные зоны коры. Каждый уровень этой морфологически упорядоченно организованной конструкции представляет собой совокупность клеток, аксоны которых идут на следующий уровень (исключение составляет верхний уровень, аксоны которого выходят за пределы данного анализатора). Взаимоотношения между последовательными уровнями анализаторов построены по принципу «дивергенции-конвергенции». Чем выше нейронный уровень анализаторной системы, тем большее число нейронов он включает. На всех уровнях анализатора сохраняется принцип топической проекции рецепторов. Принцип многократной рецептотопической проекции способствует осуществлению множественной и параллельной переработки (анализу и синтезу) рецепторных потенциалов («узоров возбуждений»), возникающих под действием раздражителей [3, с.221].

Уже в функциональной организации клеточного аппарата рецепторного уровня анализаторов выявились существенные черты их приспособления к адекватному отражению действующих раздражителей (специфичность рецепторов по фото-, термо-, хемо и другим видам «энергии»). Известный закон Фехнера о логарифмическом отношении силы раздражителя и интенсивности ощущения получил объяснение в частотных характеристиках разряда рецепторных элементов. Обнаруженный в 1958 г. Ф. Ратлиффом эффект латерального торможения в глазе мечехвоста объяснил способ контрастирования изображения, улучшающий возможности предметного зрения (детекции формы). Механизм латерального торможения выступил как универсальный способ формирования селективных каналов передачи информации в центральной нервной системе. Он обеспечивает центральным нейронам анализаторов избирательную настройку их рецептивного поля на определенные свойства раздражителя [13, с.320].

Проекционные зоны анализаторных систем занимают наружную (конвекситальную) поверхность новой коры задних отделов мозга. Сюда входят зрительная (затылочная), слуховая (височная) и общечувствительная (теменная) области коры. В корковый отдел этого функционального блока включается также представительство вкусовой, обонятельной, висцеральной чувствительности. При этом наиболее обширные области в коре занимает та сенсорная система, которая имеет наибольшее экологическое значение для данного вида [4, с.176].

Таким образом, основные, модально-специфические зоны анализаторов мозга построены по единому принципу иерархической структурной и функциональной организации. Первичные и вторичные зоны, согласно И.П. Павлову, составляют центральную часть, или ядро, анализатора в коре, нейроны которого характеризуются избирательной настройкой на определенный набор параметров раздражителя и обеспечивают механизмы тонкого анализа и дифференцировки раздражителей. Взаимодействие первичных и вторичных зон носит сложный, неоднозначный характер и в условиях нормальной деятельности обусловливает согласованное содружество процессов возбуждения и торможения, которое закрепляет макро и микроструктуру нервной сети, занятой анализом афферентного потока в первичных проекционных сенсорных полях. Это создает основу для динамического межанализаторного взаимодействия, осуществляемого в ассоциативных зонах коры.

Особое внимание уделим роли ретикулярной формации в формировании ощущений. Необходимо прежде всего сказать о том, что пути проведения нервных импульсов, порождающих ощущения, различны. Известный психофизиолог Е.Н. Соколов пишет, что существует по крайней мере два пути проведения нервного возбуждения: специфический и неспецифический [16, с.4]. Специфический путь связан с анатомо-физиологическим устройством нервных структур, относящихся к данному анализатору. Неспецифический идет через ретикулярную формацию, волокна которой начинаются от спинного мозга и заканчиваются в неспецифических ядрах таламуса.

«В отличие от импульсов, идущих по специфическому пути проведения возбуждения, импульсы, поступающие в ретикулярную формацию, многократно отражаясь, передают не специальную информацию, связанную с тонким различением свойств предмета, а регулируют возбудимость корковых клеток, заканчиваются в коре синапсами неспецифических волокон» [17, с.36].

Проведение возбуждения по неспецифическому пути характеризуется изменением фоновой ритмики коры, которое наступает с некоторым опозданием после ответа коры на специфическое возбуждение. «В передаче активизирующего влияния на корковые нейроны участвуют две основные части ретикулярной системы - стволовая и таламическая, отличающиеся по характеру своего действия. К этим отделам ретикулярной формации на разных уровнях отходят специальные коллатерали, так что изолированное нарушение одной системы не исключает действия другой. Стволовая ретикулярная система оказывает влияние на всю кору, вызывая широко распространенную депрессию (десинхронизацию) медленных волн. В отличие от нее ретикулярная система таламуса обладает более избирательным действием; одни ее отделы локально влияют на передние сенсорные, а другие -- на задние области коры, связанные с переработкой зрительно-слуховой информации» [17, с.37].

Тут необходимо отметить, что только совместная работа специфической и неспецифической ретикулярной систем может обеспечить полноценное восприятие раздражителя и его использование в регуляции поведения.

Анализатор, таким образом, выступает как сложная афферентно-эфферентная система, деятельность которой тесным образом связана с работой ретикулярной формации, причем периферические рецепторы в анализаторе являются не только приборами, воспринимающими раздражители, но также эффекторами, реагирующими на них повышением или понижением своей чувствительности через механизм обратных нервных связей. Данные связи анатомически представлены тонкими нервными волокнами, проводящими возбуждения из центральной нервной системы к периферии тела. Обратные нервные связи имеются в системе как специфического, так и неспецифического путей проведения возбуждения.

Страницы: 1, 2, 3, 4, 5


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.