Реферат: Реологические свойства САН и АБС пластиков
Неудивительно - так как сегменты разветвлённых молекул менее подвижны, поэтому при больших напряжениях они испытывают в капилляре только высокоэластические деформации и на выходе из него не успевают отрелаксировать. Для наглядности можно привести график с кривыми течения для разветвлённого и линейного образца САН с отметками о наступлении различных форм проявления неустойчивости (рис. 15а).
Рис. 15а. Критические явления течения разветвлённых и линейных САН на примере DBC 745 и SAN Ml00.
Были измерены толщины экструдатов различных САН при 220°С и для наглядности построен график - зависимость степени разбухания В=Оэкстр./О1ПШИЛЯр от логарифма напряжения (т) (рис.156).
Рис. 156. Разбухание экстру дата для образцов САН при 220°С.
Как явственно видно из данного графика - более всего разбухают разветвлённые образцы САН (что говорит о том, что они испытывают сильные высокоэластические деформации, нежели линейные образцы). Также можно заметить, что более сильно разбухающий DBC 745 имеет более высокую молекулярную массу и более широкое ММР, чем DBC 697 (табл. 1), и этот факт сам по себе служит объяснением этого феномена.
2.АБС
Табл 2.1
Образцы АБС | GS 3221.2 | GS 3221.4 | GS 3222.2 | GS 3224.1 | GS 3229.2 | Magnum 3904 | GS 3228.2 | GS 3238.4 | GS 32244.4 |
Степень прививки | 0,50 | 0,62 | 0,51 | 0,59 | 0,67 | 0,69 | 0,62 | ||
Мw (САН) |
11000 | 38000 | 172000 | 66000 | 188000 | 199000 | 154000 | 161000 | |
Мn (САН) |
52000 | 42000 | 52000 | 52000 | 53000 | 64000 | 50000 | 67000 | |
Мw/ Мn |
4,06 | 3,29 | 3,31 | 3,19 | 3,55 | 3,11 | 3,08 | 2,40 | |
Содержание каучука | 16,6 | 16,2 | 16,8 | 17,6 | 17,2 | 19,3 | 17,0 | 18,1 | |
Количество > 1нм, % | 2 | 55 | 13 | 20 | 9 | 20 | 17 | 10 | 12 |
На рисунке 17 приведены кривые течения MGS 3221.2 и Dow Magnum 3904 при 200° С. Подобные кривые были получены для всех остальных образцов. Они типичны для неньютоновских полимеров, вязкость которых уменьшается при увеличении скорости (γ) или напряжения (τ) сдвига. При напряжениях сдвига ниже lgτ = 4,1 [Па] экструдаты имеют неровную поверхность, при больших τ этот эффект исчезает.
Рис.17. Кривые течения Dow Magnum 3904 и MGS 3221.2 при 200° С
Рис. 18. Зависимость вязкости от напряжения сдвига при разных температурах для различных образцов (MGS 3221.2, 3221.4, 3222.2, 3224.1, 3229.2, 3228.2, 3238.4, 3244.4 и Dow Magnum 3904).
Графики на рис. 18 (а-и) демонстрируют зависимость вязкости от напряжения сдвига для различных партий АБС при температурах 175° - 250° С. Во всех случаях вязкость убывает с ростом т, т.е. проявляется аномалия вязкости, особенно при lg τ ≥ 4,0 - 4,5 [Па]. При lg τ < 3,5 - 4,0 [Па] вязкость постепенно приближается к постоянным значениям. Для наглядности на рис. 19 представлены гистограммы вязкости для всех партий АБС при lgτ=4,0 [Па]. Видно, что вязкость различных образцов АБС отличается не больше чем в 10 раз. Наименьшей вязкостью обладают MGS 3221.4 и MGS 3224.1, а наибольшей MGS 3228.2. Вязкость Dow Magnum 3904 при 200° и 225° С занимает четвертое место, а при 250° С - второе (близко к вязкости MGS 3221.2). Это говорит о низком температурном коэффициенте вязкости данной партии. На рисунке 20 приведена зависимость lgη от lgτ при 200° С для различных партий АБС. Во многих случаях кривые приблизительно параллельны. Подобная картина наблюдалась и при других температурах. Примечательно, что кривые lgη = f(lg τ) для каждого образца при разных температурах также параллельны (рис. 18).Это означает, что они должны совмещаться при сдвиге вдоль оси вязкости. В качестве температуры приведения нами была выбрана 200° С. Фактор сдвига lgат=lg(η/η200) должен отражать температурную зависимость вязкости образца.
Рис.19. Вязкости АБС-пластиков при различних температурах и
log τ = 4.0 [Ра].
Рис.20. Зависимость вязкости от напряжения сдвига для АБС-
пластиков при 200° С.
Графики на рис.21 (а, б) показывают температурную зависимость вязкости для различных АБС в аррениусовских координатах. Наибольшее отклонение от линейности наблюдается для образца Dow Magnum 3904, вероятно вследствие его более выраженной микроблочной структуры. Если зависимость lg η = f(l/T) аппроксимировать прямой, то все образцы АБС-пластиков имеют приблизительно одинаковые величины эффективной энергии активации течения - Еа, составляющие 114 - 128 кДж/моль. При расчете энергии активации как Еа=d(lgη)/2,3R*d(l/T) изменение температуры от 175° до 250° С приводит к снижению Еа от ~ 150 до ~ 90 кДж/моль.
Важной характеристикой для переработчиков является зависимость вязкости от скорости сдвига. Она может быть рассчитана исходя из кривых течения или данных рис.18 согласно формуле γ=τ/η. Зависимости η(γ) качественно подобны зависимостям η(τ). Исходя из принципа температурно-временной суперпозиции, эти зависимости могут быть обобщены. Для этого необходимо представить данные в координатах lg (η/ η0) - lg (η0γ), где η0 – ньютоновская вязкость, как функция температуры. Кривые течения образцов АБС были получены в области τ, отвечающей проявлению аномалии вязкости. Величины η0 могут быть получены с хорошим приближением путем экстраполяции линейной области зависимости lg η = f(τ) в полулогарифмических координатах к τ = 0. Такая экстраполяция в области низких напряжений (т ~ 4*103 ÷ 1,5*104 Па) для расплавов АБС правомерна.
Вязкость полимеров очень чувствительна к величине их молекулярной массы и к надмолекулярным элементам их структуры. В частности, величина ньютоновской вязкости пропорциональна М3,5. Кроме того, неньютоновская вязкость зависит от молекулярно массового распределения, степени разветвленности и т.д. В случае таких многофазных материалов, как АБС-пластики, присутствие полибутадиеновой фазы (ее концентрация, размер частиц, степень прививки цепей САН на ее поверхность и т.д.) должно играть важную роль. Однако концентрация полибутадиена в большинстве исследованных образцов АБС приблизительно одинакова. С увеличением Mw вязкость значительно возрастает, и зависимость η = f(Mw) может быть описана степенной функцией η ~ (Mw)3,75. Возможно, такая сильная зависимость по сравнению с обычной определяется повышенным межцепным взаимодействием цепей САН.
Разброс точек на рис. 21 далеко выходит за рамки ошибки эксперимента. Это может быть связано с различием размера частиц полибутадиена и их Dw/Dn. Другая возможная причина заключается в различие ММР цепей САН (табл. 2.1). Так, в случае MGS 3221.2 и MGS 3244.4 их вязкости при lgτ = 3,5 [Па] практически совпадают, тогда как при lgτ = 5,0 [Па] они различаются ~ в 2 раза из-за более высокой аномалии вязкости MGS 3221.2. Этот образец имеет более широкое ММР цепей САН (ММР = 4,06) по сравнению с образцом MGS 3229.2, для которого ММР = 3,1.
Рис.21. Вязкость образцов АБС в зависимости от Mw САН при разных температурах и lg т = 4,0 [Па].
Наряду с вязкостью, было изучено разбухание экструдатов ЛБС. Нго характеризовали величиной В = Dэкстр/Dкап, где Dэкстр - диаметр экструдата АБС, a Dкап - диаметр капилляра. Величина В представляет интерес для переработчиков, поскольку характеризует эластические деформации, возникающие в процессе экструзии.
Рис.22 Разбухание экструдатов для образцов АБС при 200° С.
Рисунок 22 изображает величины разбухания для различных партий АБС. Из рисунка видно, что параметр В изменяется незначительно при переходе от одной парии АБС к другой. В области lg т = 4,0 - 5,0 [Па] величина В остается практически постоянной, а затем при lg т > 5,0 [Па] возрастает. В общем, величины В для расплавов АБС довольно малы, особенно при lg т < 5,0 [Па], по сравнению с В для индивидуальных гибкоцепных полимеров. Эластическое поведение АБС-пластиков подобно поведению расплавов наполненных полимеров. На рис. 23 изображена теоретическая микроструктура фрагмента макромолекулы АБС-пластика.
Полибутадиен с включениями САН
Цепи привитого САН
Цепи САН