RSS    

   Реферат: Расчет разделения смеси диоксан-толуол в насадочной ректификационной колонне

Примем S=16 мм.

4.2 Расчет толщина крышки и днища

Толщину стенки эллиптического днища определяют по формуле:

,                                           (4.9)

мм.

Принимаем толщину крышки и днища равной толщине стенки = 16 мм.

4.3 Расчёт изоляции колонны

Определить необходимую толщину слоя изоляции аппарата, внутри  которого температура 102 С. Изоляционный материал - совелит.  Температура наружной поверхности изоляции не должна быть выше  35  С.  Примем температуру окружающего воздуха tо =  20 °C  и  определим  суммарный коэффициент теплоотдачи в окружающую среду лучеиспусканием и конвекцией по уравнению 4.71 [8]:

α = 9,74+0,07 ∙ Δt = 9,74+0,07 ∙ (35-20) = 10,79 Вт/(м2 ∙ К).

Удельный тепловой поток:

q = α ∙ (tст-to) = 10,79 ∙ (35-20) = 161,85 Вт/м2.

Принимая приближенно, что все термическое сопротивление сосредоточено в слое изоляции, можно написать:

q = K(tвн-to) = la/б ∙ (tвн-to),

откуда толщина слоя изоляции (la = 0,098 теплопроводность совелита)

б = la/q ∙ (tвн-to) = 0,098/161,85 ∙ (102-20) = 0.05 м.

Так как наиболее горячая часть колонны это  куб,  то  для  всей  остальной колонны можно принять ту же толщину слоя изоляции.

4.4 Расчёт штуцеров.

Расчёт штуцеров сводится к определению диаметра штуцера по уравнению:

,                                                                                   (4.10)

где w - скорость, для жидкости принимаем 1,5м/с, для пара – 15 м/с.

4.4.1 Штуцер для ввода исходной смеси.

VF = GF/rF                                                                                          (4.11)

VF = 0,58 /790 = 7,34 ∙ 10-4 м3/с.

 0,025 м = 25 мм.

По ОН26-01-34-66 примем штуцер с наружным диаметром 37мм, с условным проходом Dу=25 мм.

 4.4.2 Штуцер для ввода флегмы

                                                                                 (4.12)

VD = GD ∙ R,                                                                                     (4.13)

где R = 6,6 – флегмовое число

VD = 0,278  ∙ 6,6 = 1,835 кг/с.

 0,044 м  = 44 мм.

По ОН26-01-34-66 примем штуцер с наружным диаметром 64 мм, с условным проходом Dу=50 мм.

4.4.3 Штуцер для отвода кубового остатка

VW = GW ∙ R,                                                                                      (4.14)

где R – отношение количества кубового остатка и парожидкостной смеси, принимаем её равной 2.

VW = 0,302 ∙ 2 = 0,604 кг/с.

 0,025 м  = 25 мм.

По ОН26-01-34-66 примем штуцер с наружным диаметром 37 мм, с условным проходом Dу=25 мм.

4.4.4 Штуцер для вывода паров дистиллята

V = G/rП                                                                                             (4.15)

rП = r’ = 2,95 кг/м3

G = GD ∙ (R + 1)                                                                                  (4.16)

G = 0,278  ∙ (6,6 + 1) = 2,113 кг/с.

V = 2,113/2,95 = 0,716 м3/с.

 0,245 м  = 245 мм.

По ОН26-01-34-66 примем штуцер с наружным диаметром 278 мм, с условным проходом Dу=250 мм.

4.4.5 Штуцер для ввода паров кубовой смеси

V = G/rП                                                                                               (4.17)

rП = r” = 2,96 кг/м3

G = GW ∙ (R+1)                                                                                     (4.18)

G = 0,302 ∙ (6,6+1) = 2,295 кг/с.

V = 2,295/2,96 = 0,775 м3/с.

 0,255 м  = 255 мм.

По ОН26-01-34-66 примем штуцер с наружным диаметром 278 мм, с условным проходом Dу=250 мм.

4.5 Емкости

Ёмкости рассчитываются  на непрерывную работу в течении 2 - 8 часов. Предельные объемы емкостей находим из соотношения:

V(max) = G ∙ t(max)/p      t(max) = V(max) ∙ p/G         

V(min) = G ∙ t(min)/p      t(min) = V(min) ∙ p/G                                      (4.19)

G - массовый расход;

t - время работы;

р - плотность при 20 °С.

В данном случае нет необходимости в точном расчете плотности и, так как для всех жидкостей они схожи, возьмем ρ = 790 кг/м3.

1. Е1 - емкость для исходной смеси.

V(max) = 2088 ∙ 8/790 = 21 м3,

V(min) = 2088 ∙ 2/790 =  5,3 м3.

2. Е2 - емкости для кубового остатка:

V(max) = 1088 ∙ 8/790 = 11 м3,

V(min) = 1088 ∙ 2/790 = 2,8 м3.

2. Е3 - емкости для дистиллята:

V(max) = 1000 ∙ 8/790 = 10,1 м3,

V(min) = 1000 ∙ 2/790 = 2,5 м3.

Примем цилиндрические ёмкости с элептическими днищами,  изготовленные  из  стали 12Х18H10Т:

Таблица 4.2. Ёмкости

Ёмкость для Длина L, м Внутренний диаметр D, м

Объём V, м3

Толщина стенки S, мм
исходной смеси 4,5 2,4 20,5 3

дистиллята и

кубового остатка

3,5 2 9 3

1. Е1 - емкость для исходной смеси:

t = 790 ∙ 20,5/2088 = 7,75 часов.

2. Е2 - емкости для дистиллята:

t = 790 ∙ 9/1000 = 7,11 часов

2. Е3 - емкости для кубового остатка:

t = 790 ∙ 9/1088 = 6,53 часов

Все емкости с целью облегчения технического обслуживания и промывки связаны с магистралями оборотной воды и пара.

4.6 Насосы

Для перекачки кубового остатка и исходной смеси исходя из расходы и высоты, на которую подаётся жидкость, выберем насосы из таблицы соответственно под номером 1 и 2:

Таблица 4.3 Герметичные насосы типа ЦГ

Наименование Р, КВт Подача/напор Т жидкости, °С Масса, кг.
1. ЦГ 6,3/20К-1,1-2 1,1 6,3 / 20 - 50… + 100 70
2. ЦГ 6,3/32К-2,2-2 2,2 6,3 / 32 - 50… + 100 79

Насосы ЦГ применяются в химической, газовой, топливно-энергетической, фармацевтической, нефтехимической, нефтяной, пищевой, мясо-молочной, холодильной и перерабатывающей промышленности и других производствах.  Эксплуатация насосов без утечек и отсутствия обслуживающего персонала позволяет использовать их при работе с высокотоксичными, ядовитыми, химически активными жидкостями и сжиженными газами.  Смазка и охлаждение насосов осуществляется перекачиваемой жидкостью.  Уровень защиты - взрывобезопасный.

Предназначены для перекачивания в стационарных условиях жидкостей и сжиженных газов, пары которых могут образовывать с воздухом взрывоопасные смеси.   Указанные жидкости могут быть нейтральными, агрессивными и вредными всех классов с кинематической вязкостью до 40 сСт и плотностью не более 1800 кг/м3.   Допускается наличие твердых неабразивных включений с массовой долей до 0,2% и размером частиц не более 0,2 мм.

Рис. 4.1 Герметичный насос типа ЦГ

Материал проточной части: 12Х18Н10Т (исп. К) или 10Х17Н13М2Т (исп. Е) или ст. 3-10 (исп. А)

Изготавливаются на одно из напряжений 380 / 660 В.

В комплект поставки насосов входят: паспорт, ЗИП и принадлежности.

Условное обозначение электронасоса на примере 1ЦГ12,5/50К-4-2-У2:

1 -  порядковый номер модернизации;

ЦГ -  центробежный герметичный;

12,5 -  номинальная подача (м3/ч);

50 -  номинальный напор (м.);

К -  условное обозначение по материалу ("К" - 12Х18Н10Т, "Е" - 10Х17Н13М2Т, "А" - ст. 3-10);

4 -  номинальная мощность встроенного электродвигателя (кВт);

2 -  конструктивное исполнение в зависимости от температуры и давления перекачиваемой жидкости;

У -  климатическое исполнение;

2 -  категория размещения;

При выполнении с одним из вариантов наружного диаметра рабочего колеса, после величины напора добавляется "а" или "б".


Заключение

В процессе проделанной работы была рассчитана ректификационная установка для разделения смеси диоксан-толуол.

Были получены следующие данные:

диаметр колонны - 1200 мм;

высота колонны – 34 м;

толщина цилиндрической обечайки, элептического днища и крышки 16 мм.

Колонна состоит из 5 секций (3 в верхней части колонны и 2 в нижней) по 5 метра каждая, с расстоянием между секциями 1,215 м. В качестве перераспределитель жидкости принята тарелка ТСН-II.  Жидкости подаются на тарелки ТСН-III.

Колонна насадочного типа работает в плёночном режиме.

Были выбраны в качестве насадки керамические кольца Палля размером 35х35х4, с удельной поверхностью а=165 м2/м3, свободным объём ε=0,76 м3/м3, насыпной плотность 540 кг/ м3 , dэ=0,018, числом штук в м3 18500.

Рассчитали тепловой и механический баланс установки, построили графики и таблицы.
Список использованной литературы

1.  Касаткин А. Г., Основные процессы и. аппараты химической технологии. Изд. 9-е. М.: Химия, 1973. 750 с.

2.  Справочник коксохимика. Т. 3. М.: Металлургия, 1966. 391 с.

3.  Рамм В. М. Абсорбция газов. М.: Химия, 1976. 655 с.

4.  Коробчанский   И.   Е.,   Кузнецов  М.   Д.   Расчет   аппаратуры   для   улавливания   химических продуктов коксования. М.: Металлургия. 1972. 295 с.

5.  Александров И. А. Ректификационные и абсорбционные аппараты. М.: Химия,  1978. 277 с.

6.  Лащинский А. А., Толчинский А. Р. Основы конструирования и расчета химической аппара­туры. Л.: Машиностроение, 1970. 752 с.

7.  Стабников В. Н. Расчет и конструирование контактных устройств ректификационных и абсорб­ционных аппаратов. Киев: Техника, 1970. 208 с.

8.  Павлов К. Ф., Романков П. Г., Носков А. А. Примеры и задачи по курсу процессов и аппа­ратов. Л.: Химия, 1976, 552 с.

9.  Бретшнайдер С. Свойства газов и жидкостей. М.— Л.: Химия,  1970. 535 с.

10.  Хоблер Т. Массопередача и абсорбция. Л.: Химия, 1964. 479 с.

11.  Дытнерский Ю.А., Процессы и аппараты химической технологии. 2-е изд., перераб. и дополн.- М.: Химия, 1991-496с.

12.  Колонные аппараты. Каталог. М.: ЦИНТИХИМНЕФТЕМАШ, 1978. 31 с.

13.  Касаткин А. Г., Дытнерский Ю. И., Кочергин Н. В. Тепло-  и  массоперенос. Т.  4. Минск: Наука и техника. 1966. С. 12—17.


Страницы: 1, 2, 3, 4, 5


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.