Реферат: Пробивка и центровка валопровода
После разметки и нанесения рисок вторично проверяют световую линию с целью установления того, что мишени при нанесении рисок не сбиты. Проверку световой линии и ее предъявление для контроля производят ночью, когда выравнивается температура всех металлических частей корпуса.
После производства расточки отверстий кронштейна гребного вала, дейдвудной трубы и т. д. может быть произведена контрольная проверка оси валопровода путем установки по центрам расточенных отверстий мишеней и пробивки ее по свету.
Пробивка осей валопровода с помощью света имеет недостаток, заключающийся в рассеивании (дифракции) лучей света при прохождении его через мишени.
При прохождении света через две мишени поле света имеет значительные размеры, а улавливание луча «на яркость» зависит от положения наблюдателя и то субъективных качеств его зрения.
Для пробивки осей валопроводов применяют также различные оптические приборы, к которым относятся коллиматор с телескопом, нивелир и визирная труба стандартных геодезических приборов. Нивелир находит применение для пробивки осей валопроводов с внутренним сверлением.
В основу использования коллиматора заложен способ определения геометрической оси валопровода с помощью линз и сферических зеркал. Вместо коллиматора в настоящее время применяют более простую визирную трубу.
При пробивке световой линии на расстоянии, не превышающем 25 м, рекомендуется применять визирную трубу теодолита марки Т-5, при больших расстояниях – визирную трубу прецизионного нивелира марки НА-1.
Основными узлами визирной трубы (рис. 2) являются: объектив 3, фокусирующая линза 4, сетка с перекрестием штрихов 5 и окуляр 6.
Если перед объективом на каком-либо расстоянии поместить прозрачную мишень 2 с нанесенными на ней делениями и осветить ее электрической лампочкой 1, то, наблюдая через окуляр, можно видеть на прозрачной сетке визирной трубы деления прозрачной мишени. В том случае, когда мишень находится на одной оси с визирной трубой и перпендикулярна ей, штрихи делений мишени и перекрестие сетки совместятся в центре мишени.
При размещении электрической лампочки перед окуляром можно спроектировать перекрестия сетки на мишени, расположенную на расстоянии от визирной трубы.
Этим и отличаются между собой два способа центровки валопроводов с помощью визирной трубы. Следовательно, по первому способу проектирования непосредственно наблюдают мишень в окуляр трубы, а по второму – перекрестие сетки визирной трубы на мишени.
В первом случае мишени можно изготовлять из органического стекла для лучшей наводки на них визирной трубы. Но чаще применяют металлические мишени с белой матовой поверхностью, освещаемой лампой мощностью 40 Вт.
Лампа имеет рефлектор, предотвращающий непосредственное попадание лучей света в объектив визирной трубы. Во втором случае визирную трубу дополнительно снабжают проекционной насадкой. Точность, достигаемая первым способом, несколько выше, чем вторым.
Если установить визирную трубу на кормовой шергень таким образом, чтобы ось трубы проходила в центре ближайшей мишени, выверенной по контрольным рискам на мортире, дальняя же мишень была бы установлена на базовой точке, отмеченной на носовой переборке, то в том случае ось визирной трубы будет соответствовать направлению оси валопровода. Используя другие мишени, можно зафиксировать положение оси валопровода в необходимых поперечных сечениях (переборки, подшипники и т. д.).
В настоящее время для центровки теоретической оси валопровода на крупных заводах стали применять точные оптические приборы для проверки прямолинейности, плоскостности и соосности, такие, например, как оптические струны ДП-477, ППС-11, ДП-725 или автоколлимационная оптическая струна ОС-ЗМ.
Оптическая струна ДП-477 предназначена для установки в прямую линию (оптическую ось), а также для измерения отклонений от прямолинейности на больших расстояниях.
Оптическая струна состоит из двух отдельных элементов (рис. 3) – светящейся точечной марки I и визирной трубы II.
Нить лампы 1 проектируется коллектором 2 на точечную диафрагму 3. Эта часть оптической схемы образует точечную марку I. Марка снабжена пятью точечными диафрагмами с диаметрами: 0,01; 0,02; 0,05; 0,1 и 0,5 мм. Вторая часть оптической схемы образует визирную трубу II. Она состоит из сферического мениска 5 и наблюдательного микроскопа III.
Для удобства работы ход лучей в микроскопе изломан с помощью призмы 9. Изображение диафрагмы 3 точечной марки I с тем или иным увеличением в зависимости от дистанции проектируется объективом 6 в предметную плоскость микроскопа III. Микрообъектив 6 переносит изображение в плоскость окулярной сетки 8, где оно рассматривается через окуляр 7 глазом наблюдателя.
Плоскопараллельная пластина 4 является оптическим компенсатором; наклоны ее позволяют измерять смещение точечной диафрагмы 3 с оптической оси. Принцип действия прибора заключается в следующем. Перемещают марку и, если последняя имеет отступления от прямолинейности, точечная диафрагма 3 смещается с оптической оси. Это вызывает смещение изображения точечной диафрагмы в предметной плоскости микроскопа III и в плоскости сетки 8. Таким образом, отступление от прямолинейности в конечном итоге наблюдается как смещение изображения точки относительно перекрестия окулярной сетки. Вращение микровинта (на схеме не показано), барабан которого имеет цену деления, равную 0,001 мм, совмещают наклоном пластины 4 изображение диафрагмы со штрихом сетки и отсчитывают по барабану винта величину отступления от прямолинейности в данной точке в микрометрах.
При пробивке теоретической оси валопровода с помощью оптического прибора его установка должна осуществляться при помощи приспособления, конструкция которого позволяет изменять положение прибора при его центрировании по базовым мишеням.
Если на носовой и кормовой переборках машинного отделения зафиксированы точки, через которые проходит ось валопровода, то, очевидно, совмещая ось вала главного дизеля с линией, соединяющей эти точки, можно с достаточной точностью смонтировать главный дизель на машинном фундаменте.
2. Сборочные единицы крепления ДВС
2.1. Определение размеров прокладок при монтаже ДВС
Прокладки или клинья должны обеспечить надежное крепление и минимальную трудоемкость монтажа механизмов. Эти требования для одного и того же механизма могут быть удовлетворены при различных конструкциях и материалах прокладок. Окончательный выбор определяется технологичностью конструкции компенсирующего звена и техническими возможностями завода – строителя судна.
При выборе материала основное значение имеет неизменность механических характеристик и формы прокладок под нагрузкой при различных температурных условиях эксплуатации. Размеры прокладок выбирают, исходя из удельного давления от веса механизма и усилия затяжки фундаментных болтов. При расчете вначале числом и площадью прокладок, а затем проверяют на удельное давление правильность выбора.
Удельное давление на прокладку, МПа, от веса механизма:
,
где – вес механизма, Н;
– число прокладок;
– площадь прокладки, м2Z10–6.
Удельное давление на прокладку , МПа, от усилия затяжки фундаментных болтов:
,
где – усилие затяжки болта, Н.
Усилие затяжки:
,
где – напряжение от затяжки болта, МПа;
– предел текучести материала болта, МПа: для стали 45 МПа;
– площадь поперечного сечения болта, м2Z10–6;
– внутренний диаметр резьбы болта, мZ10–3.
Суммарное удельное давление , МПа, на прокладку:
не должно превышать допускаемого значения , выбираемого в зависимости от материала лап фундамента механизма и типа прокладок.
Принимаем: материал прокладки – пластмасса на основе эпоксидной смолы;
материал остова – чугун.
Тогда МПа.