RSS    

   Реферат: Порошковые и композиционные материалы

III. ОСНОВЫ ПРОИЗВОДСТВА ПОРОШКОВЫХ СПЛАВОВ

Процесс производства порошковых сплавов заключается в получении порошка, составлении шихты, прессовании и спекании.

Производство порошков. Важнейшими методами производства порошков являются:

1)   восстановление металлов из окислов;

2)   механическое измельче­ние;

3)    электролитическое осаждение;

4)    распыление жидкого металла;

5)    на­грев и разложение карбонилов.

Наибольшим распространением пользуются первые два метода.

Восстановление металлов из окислов широко применяется в производстве порошков тугоплавких редких металлов, вольфрама и молибдена, а также кобальта, никеля и железа. Руды редких металлов подвергаются сложной пере­работке и размолу для получения порошков окислов, которые восстанавли­ваются затем путем нагрева в газовой среде водородом, генераторным газом или твердыми восстановителями—сажей, коксом, графитом. Иногда приме­няется комбинированное восстановлена путем нагрева вместе с твердым и газовым восстановителем. Восстановление из окислов позволяет получить очень мелкие и чистые порошки.

Таблица 1.  Применение и состав порошковых сплавов

Тип порошковых сплавов

Назначение

Исходные материалы

Антифрикционные Для подшипников скольже­ния Порошки железа и графита Порошки меди, олова и гра­фита
Фрикционные Для тормозных дисков Порошки меди, олова, свин­ца, графита, асбеста и пр. Порошки железа, свинца, графита и асбеста
Пористые Для фильтров Бронзовая дробь
Плотные Для деталей машин из стали и жаропрочных и окалино-стойких сплавов Порошки железа и различ­ных металлов
Тугоплавкие

ДЛЯ проволоки ДЛЯ ламп

контактов и деталей при­боров

Порошки вольфрама, мо­либдена и других туго-плавких металлов
Электротех­нические Для контактов н постоянных магнитов Порошки меди, вольфрама и др. Порошки железа, алюминия, никеля и кобальта.
Твердые сплавы Для режущего инструмента. Волок, буры Порошки карбида воль­фрама, карбида титана, кобальта

При механическом измельчении — размоле на шаровых, молотковых и особенно на вихревых мельницах — наиболее выгодным является использование металлической стружки. Шаровые мельницы применяются для размола хрупких металлов — чугуна, закаленной стали, бронзы, окислов и др. Молотковые мельницы применяются для получения порошков алюминия и бронзы.

С 1930 г. начали широко применять вихревые мельницы, в которых измельчение производится ударами частиц металла друг о друга под действием воздушных вихрей. Вихревое дробление применяется для производства железных порошков для пористых подшипников, стальных деталей и др. Некоторые металлы, например алюминий и магний, во избежание воспламенения измель­чают в защитной атмосфере. Порошки, полученные путем механического из­мельчения, тверды, плохо прессуются и требуют отжига для снятия наклона.

Электролитическое осаждение применяется для производства порошков электроположительных металлов — меди и некоторых других металлов, например, титана, ванадия я других, а иногда также и железа.

Распыление жидкого металла потоком сжатого воздуха, пара или инертного газа сначала применяли для производства порошков легкоплавких метал­лов — алюминия, олова и свинца. В настоящее время этим методом распыляют также расплавленные сталь и чугун.

Испытание порошков. Порошковая металлургия предъявляет ряд требований к форме и размерам порошков. Например, для некоторых деталей тре­буются порошки чешуйчатой формы, полученные на вихревых мельницах, а для фильтров, наоборот, — шарообразной формы, полученные распылением. Прессуются лучше крупные порошки, особенно если среди них есть и мелкие частицы, а спекаются лучше мелкие. Зернистость порошков определяется путем ситового анализа: порошок просеивают через ряд сит со все более мел­кими отверстиями и взвешивают остатки с каждого сита. Форму зерен опреде­ляют, рассматривая их под микроскопом с сетчатым окуляром. Насыпной вес порошка определяется весом 1 см3 свободно насыпанного порошка. Он зави­сит от размера, формы и состояния поверхности его частиц и является очень важной его характеристикой.

При конструировании прессформ необходимо знать насыпной вес порошка, который будет в них прессоваться, чтобы определить объем полости матрицы и ход пуансона. Перед прессованием порошки просеивают, подвергают смягчаю­щему или восстановительному отжигу и тщательно (длительно) перемешивают.

   

 Прессование. Для прессования применяют большей частью быстроходные легко автоматизируемые эксцентриковые (кривошипные) прессы, а иногда и тихоходные гидравлические прессы. Прессование производится в прессформах при давлении от 10 до 100 кГ/мм2 (от 98 до 981 Мн/м2) в зависимости от твер­дости порошка и формы изделия: чем тверже порошок, тем больше давление прессования, при этом усадка получается от 2:1 до 6:1.

Вследствие трения порошка о стенки прессформы процесс прессования получается прерывистым, ступенчатым, нагрузка и сжатие порошка меняются скачками. Важнейшую роль при сильных давлениях прессования играет пластическая деформация частиц порошка, которая вызывает увеличение поверх­ности соприкосновения (контактной поверхности) их между собой. Прочность прессования объясняется двумя причинами: атомарным схватыванием на кон­тактной поверхности — «зацеплениями», переплетением неровностей на поверх­ности частиц порошка.

В различных частях сечения порошок уплотняется неодинаково. При по­следующем спекании усадка может оказаться неоднородной, и недопрессованная часть будет плохо спекаться. Поэтому прессование проходит лучше при наличии деталей небольшой высоты. Вместе с тем порошок не может, подобно жидкости, заполнить очень сложную фасонную форму; следовательно, из по­рошковых сплавов можно изготовлять детали сравнительно не очень сложной формы.

Спекание. Для спекания порошковых сплавов применяют электропечи с металлическим сопротивлением, с угольными сопротивлениями в виде труб и высокочастотные. Спекание производится в защитной атмосфере. Для спе­кания медных сплавов, железа и фрикционных материалов применяют защит­ные атмосферы, получаемые при частичном сжигании газа. При спекании вольфрама, молибдена, твердых сплавов, магнитных и электротехнических материалов применяют водород. Температура спекания составляет примерно 2/3 тем­пературы плавления металла, например для меди 800-850° С, для железа — 1050-1150° С. Длительность спекания примерно 2—3 ч. Различаются два основных типа спекания — спекание однокомпонентной системы, спекание многокомпонентной системы с образованием или без образования жидкой фазы. При спекании происходят следующие пиления: повышение температуры увеличивает подвижность атомов, происходит изменение контактной поверхности  частиц, которая большей частью увеличивается; происходит снятие напряже­ний в местах контакта и рекристаллизация, сопровождающаяся ростом зерна через контактные поверхности; восстанавливаются окислы и удаляются адсор­бированные газы и жидкости, и результате контакт становится металли­ческим.

В случае многокомпонентных систем, кроме перечисленных явлений, про­исходит образование твердых растворов, диффузия и образование химических соединений. При спекании порошков с большой разницей температур плавления, например порошков карбида вольфрама с порошком кобальта, образуется жидкая фаза, которая капиллярными силами стягивает нерасплавившиеся частицы. В результате получаются плотные детали. Иногда, например при производстве медновольфрамовых электродов, сначала прессуют и спекают порош­ковый вольфрамовый каркас, потом пропитывают его расплавленной медью. Спекание обычно сопровождается усадкой, которая тем больше, чем выше тем­пература спекания и чем ниже давление прессования. Усадка изменяет раз­меры деталей; поэтому детали, требующие высокой точности, например под­шипники н зубчатые колеса, после спекания калибруют путем протягивания через сквозные прессформы. У сплавов, образующих жидкую фазу, усадка и процессе спекания составляет 5 - 25%, а у сплавов, не образующих жидкой фазы, 0,5—2,5%.

Горячее прессование, совмещающее прессование и спекание, благодаря ряду преимуществ начинает распространяется всё шире. При горячем прессовании требуется более низкое давление, которое составляет всего 5—10% дав­ления обычного прессования. Порошок лучше заполняет форму, и горячее прес­сование позволяет получать детали более сложной формы и более точных раз­меров, не требующих калибрования. Нагрев порошка производится электрическим током.

IV. ТВЕРДЫЕ СПЛАВЫ

Определение и классификация. Порошковым твердым сплавом называется сплав, состоящий из тончайших частиц (зерен) карби­дов, например WC, связанных твердым раствором WC в кобальте. В СССР ГОСТ 3882-61 предусматривает две группы металлокерамических (порошковых) твердых сплавов — вольфрамовые, со­стоящие из карбида вольфрама и кобальта, и титановольфрамовые, состоящие из карбида титана, карбида вольфрама и кобальта.

Страницы: 1, 2, 3, 4


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.