RSS    

   Реферат: Методы активации химических процессов

Реферат: Методы активации химических процессов

ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Химико-технологический факультет

РЕФЕРАТ

по курсу " Методы активации химических процессов "

на тему:


ЗВУКОВЫЕ КОЛЕБАНИЯ В ИНТЕНСИФИКАЦИИ ХИМИКО-ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

Выполнил: ст. гр. МАГ-V

Нагорный О.В.


Проверила: к.х.н. Глушанкова И.С.


Пермь, 2000


ВВЕДЕНИЕ

Для интенсификации технологических процессов применяют различные физические факторы воздействия, в частности акустические колебания. Изучением взаимодействия мощных акустических волн с веществом и возникающих при этом химических и физико-химических эффектов занимается звукохимия.

Изначально вопросы такого рода относились к одному из разделов акустики, однако со временем данный раздел настолько разросся, что стал самостоятельной областью науки, из которого в свою очередь, выделились молекулярная акустика и квантовая акустика.

Молекулярная акустика изучает взаимодействие слабых акустических волн с веществом, которое обычно не приводит к химическим реакциям в среде.

Взаимодействие звуковых квантов – фононов – друг с другом, с ядрами атомов и с электронами является объектом исследования квантовой акустики.

Акустические колебания с частотой выше 20 кГц условно принято называть ультразвуковыми, от 15 Гц до 20 кГц – звуковыми, а ниже 15 Гц – инфразвуковыми.

В молекулярной акустике используют гиперзвуковые колебания с частотой выше 1 гГц, однако, в звукохимии их не применяют.

Химическое действие акустических колебаний отличается большим разнообразием. Звуковые и ультразвуковые волны могут ускорять некоторые химические реакции за счет:

-     эмульгирования некоторых жидких компонентов;

-     диспергирования твердых компонентов реакции или катализаторов;

-     дегазации, предотвращения осаждения или коагуляции продуктов реакции;

-     интенсивного перемешивания и т.д.

Но действие ультразвука, например, на катализаторы нельзя сводить только к тривиальному диспергированию. При определенных условиях обнаруживается повышение активности катализаторов; природа этих эффектов пока недостаточно ясна.

Одной из основных задач звукохимии является исследование химических реакций, возникающих под действием акустических колебаний (звукохимических реакций), которые в отсутствии акустических волн не идут, или идут, но медленно. Поэтому главное внимание уделяется звукохимическим реакциям.

О РАЗВИТИИ ЗВУКОХИМИИ

Зарождение и развитие звукохимии было подготовлено обширными исследованиями по акустике и химической кинетике.

В 1927 году Ричардс и Лумис обнаружили, что под воздействием ультразвука в водном растворе выделяется молекулярный иод.

Это открытие стало отправной точкой для экспериментальных поисков новых звукохимических реакций.

В 1933 году Бойте показал, что при действии ультразвука на воду, в которой растворен азот, образуются азотистая кислота и аммиак.

Маргулисом, Сокольской и Эльпинером (1964 год) были осуществлены звукохимические реакции стереоизомеризации малеиновой кислоты и ее эфиров в фумаровую, которые идут по цепному механизму.

К настоящему времени опубликовано много работ по звукохимическим реакциям. Примеры звукохимических реакций показаны в таблице 1. В этой таблице также приведены величины энергетических выходов звукохимических реакций (число молекул продукта, образовавшихся при затрате 100 эВ химико-акустической энергии. Из таблицы видно, что в случае окислительно-восстановительных реакций энергетический выход составляет несколько молекул, а для цепных реакций достигает тысячи молекул.

Таблица 1

Звукохимические реакции

Исходные вещества Выход реакции, число молекул/100 эВ; присутствующий газ Основные продукты реакции

Окислительно-восстановительные реакции

Н2O                                                       2.31; О2                              Н2О2  

KNO3+H2O                                           0.03; Ar                             KNO2

CH3COOH+H2O                                   0.06; N2                      H2N-CH2-COOH

Реакции газов в кавитационной полости

  N2+H2O                                                1.33                                     H2O2

                                                                 0.3                                      HNO2

                                                                 0.1                                      HNO3

Цепные реакции

   СH-COOH + Br2 + H2O                    2440; Ar                             HC-COOH

    çç                                                                                                      çç

   CH-COOH                                                                               HOOCH

Реакции с участием макромолекул

Полистирол+стирол+С6H6          Воздух              Продукты полимеризации

Детонация взрывчатых веществ

NCl3                                               Воздух                         Продукты взрыва

Реакции в неводных системах

СН3СН + ССl4                                    Ar                                        N2, CH4, H2

                                                             O2                                     CO, CO2, H2O


КЛАССИФИКАЦИЯ УЛЬТРАЗВУКОВЫХ РЕАКЦИЙ

Необходимость классификации ультразвуковых колебаний очевидна. Известно два типа химического действия акустических колебаний. Отсюда выделяют два типа ультразвуковых реакций. К первому относятся реакции, которые ускоряются в ультразвуковом поле, но могут протекать и в его отсутствие с меньшей скоростью. К этой группе эффектов можно отнести ускорение гидролиза диметилсульфата и персульфата калия, разложение диазосоединений, ускорение эмульсионной полимеризации, окисление альдегидов, изменение активности катализаторов, например, катализаторов Циглера в процессе полимеризации.

Ко второй группе эффектов относятся реакции, которые без воздействия ультразвуковых колебаний не протекают совсем. Реакции этого типа в зависимости от механизма первичных и вторичных элементарных процессов, можно разделить на следующие шесть классов:

1)              Окислительно-восстановительные реакции, которые идут в жидкой фазе между растворенными веществами и продуктами ультразвукового расщепления воды, возникающими в кавитационных пузырьках и переходящими в раствор после их схлопывания;

2)              Реакции между растворенными газами и веществами с высокой упругостью пара внутри кавитационных пузырьков (эти реакции не могут осуществляться в растворе при воздействии радикальных продуктов расщепления воды);

3)              Цепные реакции в растворе, которые индуцируются не радикальными продуктами расщепления, а каким либо другим веществом, присутствующим в системе и расщепляющимся в кавитационной полости;

4)              Реакции с участием макромолекул, например, деструкция молекул полимера и инициированная его полимеризации, которые могут идти и при отсутствии кавитации. В этом случае значительную роль могут играть высокие градиенты скоростей и ускорения, возникающие под действием ультразвука, микропотоки;

5)              Инициирование взрыва в жидких или твердых взрывчатых веществах. Для этих процессов весьма важно возникновение ударных волн и высокиих температур при схлопывании кавитационных пузырьков, а также возможных кумулятивных струй;

6)              Звукохимические реакции в неводных средах. Примерами таких реакций могут служить:

-     отщепление тетрахлоридом углерода под действием ультразвука хлора.

-     Также ультразвуковые волны в безводной среде инициируют многие реакци с участием кремнийорганических соединений. Алкилсилоксаны взаимодействуют в ультразвуковом поле с хлористым тионилом:

Например, если R – CH3, за два часа воздействия ультразвука образуется 27.5 % (CH3)3SiCl.

Хлорсиланы под действием ультразвука реагируют с литием, при этом получают высокий выход дисиланов по по общей схеме:

Процессы, отражаемые приведенными реакциями, используют в технологии синтеза полупроводниковых материалов.

КАВИТАЦИЯ

Инициирование большинства звукохимических реакций в водном растворе под действием акустических колебаний обусловлено возникновением кавитации. Кавитация это нарушение сплошности жидкости, связанное с образованием, ростом, осцилированием и схлопыванием парогазовых пузырьков в жидкости. Необходимо отметить, что сплошность среды нарушается только при достижении некой пороговой частоты звуковых колебаний.

Страницы: 1, 2


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.