RSS    

   Реферат: Литература - Патофизиология (Повреждение клетки)

p>При патологии митоза может страдать любое из его звеньев. Руководствуясь этим, были предприняты попытки создать классификацию патологии митоза.

Наибольшую известность получила классификация, предложенная в 1972 году И.А.Аловым:

_I тип .. Повреждение хромосом: задержка клеток в профазе; нарушение спирализации и деспирализации хромосом; образование мостов между хромосомами в анафазе; раннее разъединение сестринских хроматид; повреждение кинетохора.

_II тип .. Повреждение митотического аппарата: задержка развития митоза в метафазе; рассредоточение хромосом в метафазе;полая метафаза; многополюсные митозы; асимметричные митозы;моноцентрические митозы; К-митозы.

_III тип .. Нарушение цитотомии: преждевременная цитотомия, задержка цитотомии; отсутствие цитотомии.

Можно считать установленным, что задержка вступления клеток в митоз возникает в основном в связи с нарушением их метаболизма, в частности синтеза нуклеиновых кислот и белков, а нарушение хромосом при репродукции клетки, обнаруживаемое в условиях патологии - вследствие разрыва цепей ДНК и расстройства репродукции ДНК хромосом.


 _ОБЩИЕ МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ КЛЕТОК


На уровне клетки повреждающие факторы "включают" несколько патогенетических звеньев:

I. 2 нарушение энергетического обеспечения процессов, 2протекающих в клетке:

1. Снижение интенсивности и(или) эффективности процессов ресинтеза АТФ.

2. Нарушение транспорта энергии АТФ.

3. Нарушение использования энергии АТФ.

II. 2 повреждение мембранного аппарата и ферментных сис2тем клетки;

III. 2 дисбаланс ионов и жидкости в клетке;

IV. 2 нарушение генетической программы клетки и(или) ме2ханизмов ее реализации:

А. Нарушение генетической программы:

1.Изменение биохимической структуры генов.

2.Дерепрессия патогенных генов.

3.Репрессия "жизненно важных" генов.

4.Внедрение в геном фрагмента чужеродной ДНК с пато-

генными свойствами.

Б. Нарушение реализации генетической программы:

1.Расстройство митоза.

2.Нарушение мейоза.

V. 2 расстройство внутриклеточных механизмов регуляции 2функции клеток:

1. Нарушение рецепции регуляторных воздействий.

2. Нарушение образования вторичных посредников.

3. Нарушение фосфорилирования протеинкиназ.

Повреждение клеток может быть специфическим и неспецифическим. По существу, каждое повреждение вызывается нарушением структуры и функции клеток тем или иным болезнетворным началом. Поэтому специфическое проявление повреждения на любом уровне прямо или косвенно связано с особенностями действия этиологического фактора, вызывающего данное повреждение.

Специфические формы повреждения можно усмотреть при анализе любого его вида. Например, при механической травме - это нарушение целостности структуры ткани,при иммунном гемолизе - изменение свойств мембраны эритроцитов под влиянием гемолизина и комплемента, радиационное повреждение - образование свободных радикалов с последующим нарушением окислительных процессов. Подобных примеров можно привести очень много.

Специфическим повреждениям клеток сопутствуют или следуют за ними и общие неспецифические проявления повреждения, на которых мы остановимся более подробно.

_Первым и наиболее общим неспецифическим выражением пов_реждения клетки ., вызванного любым агентом,является нарушение неравновесного состояния клетки и среды, что является общей характеристикой всего живого, независимо от уровня его организации. Организм обладает массой приспособлений, питаемых энергией пищевых веществ, с помощью которых он поддерживает состояние, препятствующее уравновешиванию диффузионных, осмотических, тепловых, электрических процессов с окружающей средой. Полное прекращение жизни - смерть характеризуется, как известно, постепенным прекращением неравновесного состояния и переходом его в состояние полного равновесия с окружающей средой.

С энергетической точки зрения, повреждение как нарушение неравновесного состояния живой системы сопровождается высвобождения дополнительной энергии в виде тепловой, электрической (потенциал повреждения), химической (снижение редокс-потенциала) и так называемой структурной энергии клеток и тканей.

Структурная энергия освобождается при  _денатурации структур цитоплазмы и клеточных органоидов. Денатурация - повреждение молекул белка, имеет много показателей, такие, как величина энтропии, степень упорядоченности молекул.

Этот процесс в химическом смысле сопровождается сглаживанием, исчезновением третичной и четвертичной структур белка, расплавлением полипептидных цепей, изменением активности сульфгидрильных групп и т.д.

Повреждение клеток выражается еще и  _нарушением структу_ры и функции мембран .. Вообще способность формировать мембраны является решающей в образовании клетки и ее субклеточных органелл. Любое нарушение сопровождается изменением проницаемости клеточных мембран и состояния цитоплазмы поврежденной клетки. Повреждение клеточных мембран, согласно модели Сингера, может быть обусловлено деструкцией их липидных или белковых (ферментных) компонентов.

Повреждение липидных компонентов клеточных и субклеточных мембран возникает несколькими путями. Важнейшими из них являются перекисное окисление липидов (ПОЛ), активация мембранных фосфолипаз, осмотическое растяжение пептидной основы мембран, повреждающееся воздействие иммунных комплексов.

Суммарным выражением патологии клеточной мембраны может служить нарушение ее основных функций:

1) мембранного транспорта;

2) изменение проницаемости мембраны;

3) изменение коммуникации клеток и их "узнавания";

4) изменение подвижности мембран и формы клеток;

5) изменение синтеза и обмена мембран.

_Мембранный транспорт . предполагает перенос ионов и других субстратов против градиента концентрации. При этом нарушается функция клеточных насосов и ингибируются процессы регуляции обмена веществ между клеткой и окружающей ее средой. Молекулярный механизм работы клеточных насосов до конца не расшифрован и в настоящее время. Энергетической основой их работы являются процессы фосфорилирования и дефосфорилирования ферментов - аденозинфосфатаз за счет энергии АТФ. Эти ферменты "вмонтированы" в белковую часть клеточных мембран. Там же работают ионные каналы, через которые проходят в клетку и из клетки ионы, вода и другие вещества (например, аминокислоты). В зависимости от вида проходящих по каналу ионов различают Na-K-АТФазу, Ca-Mg-АТФазу, Н-АТФазу. Особое значение имеет работа Na-K-насоса, результатом которой является превышение концентрации ионов К+ внутри клетки приблизительно в 20-30 раз по сравнению с внеклеточной. Соответственно этому, концентрация ионов Na+ внутри клетки приблизительно в 10 раз меньше, чем снаружи.

Повреждение Na-K-насоса вызывает освобождение ионов К из клетки и накопление в ней ионов Na, что характерно для гипоксических состояний, токсических повреждений клетки (яд кобры, каракурта), инфекционных поражений, аллергии, снижения температуры внешней среды. С транспортом ионов Na и К тесно связан транспорт ионов Са. Интегральное выражение этих нарушений хорошо иллюстрируется на примере гипоксии миокарда, которая прежде всего проявляется патологией митохондрий.

Следует отметить, что повреждение мембран митохондрий являлется ключом клеточного повреждения. В его прогрессировании большая роль принадлежит нарушению контроля уровня кальция в цитоплазме. Ишемическое повреждение митохондрий приводит к нарушению функции Na-К-АТФазного насоса, постепенному накоплению в клетке Na и потере ею калия, что в совокупности ведет к вытеснению Са из митохондрий. В результате повышается уровень ионизированного кальция в цитоплазме и увеличивается его связь с кальмодулином, что, в свою очередь, приводит к расхождению клеточных стыков, активации фосфолипаз. Эндоплазматическая сеть накапливает воду и ионы, следствием чего является развитие гидропической дистрофии. Усиление гликолиза сопровождается истощением гликогена, накоплением лактата и снижением рН. Таким образом, накопление Са в клетке можно считать универсальным механизмом клеточной деструкции.

Кроме того, хорошо известно участие Са в освобождении медиаторов аллергии из тучных клеток. По современным данным, их аллергическая травма сопровождается разжижением мембраны, разрыхлением и увеличением проводимости кальциевых каналов. Са, проникая в большом количестве внутрь клетки, способствует освобождению гистамина и других медиаторов из гранул.

_Проницаемость мембран . - качество мембраны, позволяющее поддерживать обмен клетки со средой и осуществлять контроль "перекрытых каналов", связанный с метаболизмом энергии и конформацией белка. Проницаемость мембраны позволяет поддерживать не только постоянство электролитного состава клетки - ионный гомеостаз, но и ионный гетерогенитет, т.е. вполне определенные, резко выраженные различия ионного состава внутриклеточной м внешней среды. Donnan (1911) предложил уравнение равновесия концентрации анионов и катионов по обе стороны полунепроницаемой мембраны, согласно которому произведения концентрации противоположно заряженных ионов по обе стороны мембраны равны между собой.

В качестве примера изменения проницаемости для ионов мембраны эритроцитов при иммунной травме следует указать на специфический гемолиз. Процесс гемолиза начинается с увеличения проницаемости мембраны эритроцитов для ионов К, Na, Ca. Нарушается функция Na-К-насоса, из эритроцитов выходит К, а входит Na. Увеличивается проницаемость мембран для молекул глюкозы, аминокислот и ряда других метаболитов. Тормозится обмен Cl- и HCO3- (феномен Гамбургера) и Cl- и SO4-за счет фиксации на эритроците гемолизина и комплемента.

Страницы: 1, 2, 3, 4


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.