RSS    

   Реферат: Фуллерены

Исключительно интересным способом восстановления оказался метод, предложенный в свое время Берчем и Хюккелем, который заключается в обработке литием в жидком аммиаке в присутствии трет-бутилового спирта. Темно-фиолетовая суспензия фуллерена при этом превращается в смесь продуктов гидрирования, окрашенную в светло-кремовый или вообще белый цвет. Исследование ее состава показало, что в ней преобладает C60H32, хотя количества других гидридов фуллерена значительны:


Продукты гидрирования по Берчю-Хюккелю легко теряют водород и превращаются в C60, то есть гидрирование является полностью обратимым.

Окисление и реакции с электрофильными агентами


Хотя восстановление фуллеренов кажется значительно более легким, учитывая склонность к принятию электронов (максимально может быть принято 6 электронов), многие реакции окисления, протекающие без разрыва фуллереновой сферы и изменения общего характера связей, оказываются вполне осуществимыми.
Продукты окисления фуллеренов C70On и C60On могут быть найдены в составе фуллеренового экстракта, полученного при испарении графита в вольтовой дуге. Образование этих оксидов происходит при совместном действии кислорода и света. Так, в склянке, в которой в течение полугода на солнечном свету хранили раствор C60 в толуоле, на стенках образовался коричневый налет, представляющий собой плохо растворимый в толуоле оксид C60O:

Значительно больший интерес представляет галогенирование фуллерена, в особенности его фторирование. В первых работах, посвященных фторидам, использовалась реакция с газообразным фтором, что в результате приводило к смесям продуктов. В 1992 г (Сидоров Л.Н., Болталина О.В.) было предложено использовать фториды переходных металлов, что сделало возможным получение в макроколичествах определенных фторидов фуллерена C60 практически в чистом виде:

Продукты фторирования С60 фторидами металлов

MFn (cr) ® MFn-1 (cr) +1/2 F2 (g)

- lgKp
(550°С)

C60Fx(max)

температура синтеза, °С

TbF4 ® TbF3 + 1/2 F2

2.4 42 - 44 (70) 320(350)

CoF3 ® CoF2 + 1/2 F2

4.2 36-40 350

MnF3 ® MnF2 + 1/2 F2

7.8 36 320

1/4 PtF4 ® 1/4 Pt + 1/2F2

9-11 18 460

CuF2 ® CuF + 1/2 F2

13.7 2 650

FeF3 ® FeF2 + 1/2 F2

15.9 2 650

Таким образом был охарактеризован ряд фторидов, устойчивых на воздухе:

C60F18

C60F36

C60F48

Цвет зеленовато-желтый бледно-желтый белый
Температура сублимации от 516 до 658 от 422 до 525 от 395 до 528
Энтальпия сублимации, D H° , кДж/моль 169 ± 6 134 ± 6 112 ± 7

Структура

 

Если растворимость самого фуллерена C60 в растворителях неароматического характера близка к нулю, то его фториды достаточно хорошо растворимы в гексане, хлороформе, ацетоне, а с ароматическими соединениями образуют устойчивые при обычных условиях кристаллосольваты.


В растворах фториды весьма легко окисляются, а также образуют гидроксофториды фуллеренов под действием следов воды, что затрудняет работу с ними. Деградация фторидов осуществляется по механизму нуклеофильного замещения, например:

или

C60F36 + H2O ® C60F34O + 2 HF

Нельзя не упомянуть, говоря о взаимодействии фуллерена со фтором, о явлении гиперфторирования, то есть продуктах состава C60Fn>60. Впервые такие вещества были получены Тюинманном в 1993 г при обработке C60 фтором под действием ультрафиолетового излучения. Дальнейшие исследования показали, что часть углерод-углеродных связей в продуктах оказывается разрушенной, а реакция протекает по радикальному механизму.

Для фуллеренов относительно легко осуществляются реакции хлорирования и бромирования; так, например, описан хлорид C60Cl6, бромиды C60Br8, C60Br24, причем последняя молекула является высокосимметричной. Все они исключительно легко теряют галоген при нагревании уже до 150° С.

Реакции, сопровождающиеся раскрытием сферы

Эндоэдральные комплексы

При образовании фуллереновых молекул в результате испарения графита в вольтовой дуге в атмосфере гелия внутри молекулы может оказаться атом этого инертного газа. Однако такие комплексы, как He@C60, теряют инертный газ при обычных условиях приблизительно за 90 миллисекунд.

Если в составе графита присутствует, например, оксид лантана или карбиды других редкоземельных элементов, образуются комплексы состава La@C60, La@C70, La@C74 или La@C82. Описаны эндоэдральные комплексы иттрия, скандия, церия, неодима, самария, европия, гадолиния, тербия, диспрозия, гольмия, эрбия и других элементов. Интересно отметить, что в общем невысокий выход C82 при дуговом синтезе повышается в присутствии солей лантана (получается комплекс La@C82). Исследования показали, что атом металла внутри находится в степени окисления +3, а фуллереновая оболочка заряжена отрицательно: C823-, то есть эндоэдральный комплекс одновременно оказывается и комплексом с переносом заряда (Рисунок 7).

Рисунок 7. Комплекс La@C82 (15 атомов углерода из 82-х убраны для наглядности).

 



Образование комплексов типа X@C60, где X - атом инертного газа, относительно легко происходит под давлением. Проникновение внутрь атомов аргона и более тяжелых инертных газов может происходить только в результате обратимого разрыва одной из связей C-C. Такой механизм образования комплекса получил название “оконного”. Считается, что если окажется на время разорванной связь между пяти и шестичленным кольцами, возникнет девятичленное кольцо, которое достаточно велико для того, чтобы через него “протиснулся” даже атом ксенона.

Перспективы химии фуллеренов

Нобелевский лауреат Г.Крото образно сравнил открытие фуллерена с открытием Колумбом Америки: “Подобно тому как Земля 500 лет назад перестала казаться плоской, в наши дни внимание химиков привлечено к сферическому углероду”. Другой химик, Ф.Дидрих, говоря о перспективах новой области химии, сказал: “За несколько лет фуллерен сделался одним из главных строительных блоков органической химии. На всестороннее исследование бензола, открытого М.Фарадеем в начале XIX века, потребовалось почти 100 лет, а химия фуллеренов за 10 лет достигла такого расцвета, что химики стали рассматривать его применение в синтезах как обычное дело“.

В настоящее время, несмотря на ряд замечательных открытий в этой области химии и общее прояснение картины реакционной способности фуллеренов, ощущается недостаток глубоких и полных исследований, как практического характера, так и теоретических.

Интересным направлением обещает оказаться химия гетерофуллеренов, молекулы которых содержат атомы бора, серы, азота и других элементов вместо одного или нескольких углеродных атомов.

Исключительны перспективы получения эндоэдральных соединений: внутри молекул фуллеренов достаточно места, чтобы разместить там атом, ион или небольшую молекулу. Поэтому столь большое внимание привлекают реакции, в ходе которых сфера раскрывается, например, реакции гиперфторирования.

В будущем совершенно неожиданными могут оказаться открытия, связанные с высшими фуллеренами (Cn>84), так как в настоящее время эти вещества практически недоступны в заметных количествах. Если вспомнить, что для фуллерена-60 число изомеров вида C60XY исчисляется десятками, для высших фуллеренов их будет значительно больше.

В заключение перечислим некоторые возможные области применения фуллеренов и их производных в ближайшем будущем:

·     электронные и оптические устройства, основанные на применении фуллеренов или полимерных материалов на их основе,

·     фотоматериалы и материалы для преобразования электрической энергии в световую,

·     катализаторы,

·     лекарственные средства

Некоторые области применения пока остаются гипотетическими, ввиду недостаточности современного уровня знаний:

·     получение алмазов (в том числе тонких пленок),

·     источники тока,

·     молекулярные сита и устройства для аккумулирования газов,

·     материалы для нелинейной оптики (лазеры),

·     преобразователи солнечной энергии,

·     сверхпроводники.

Не стоит сомневаться в том, что будущее химии фуллеренов окажется значительно интереснее любых прогнозов о нем.


Страницы: 1, 2, 3, 4


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.