RSS    

   Реферат: Суперкомпьютеры

Задача распараллеливания является, пожалуй, более сложной,поскольку в ней необходимо организовать синхронизацию параллельно выполняющихся процессов. Практика показала возможности эффективного распараллеливания большого числа алгоритмов для рассматриваемых сильно связанных систем. Соответствующий подход к распараллеливанию на таких компьютерах называется иногда моделью разделяемой общей памяти.

Многопроцессорные SMP-серверы на базе микропроцессоров RISC-архитектуры [MIMD]

Производительность некоторых современных микропроцессоров RISC-архитектуры стала сопоставимой с производительностью процессоров векторных компьютеров. Как следствие этого, появились использующие эти достижения суперЭВМ новой архитектуры, - сильно связанные компьютеры класса MIMD, представляющие собой симметричные многопроцессорные серверы с общим полем оперативной памяти. Этим перспективным системам имеет смысл уделить больше внимания, чем другим компьютерным архитектурам, поскольку соответствующий крут вопросов в отечественной компьютерной литературе обсуждался недостаточно полно.

Наиболее известные суперкомпьютерные серверы, имеющие подобную SMP-архитектуру - DEC AlphaServer 8200/8400  и SGI POWER CHALLENGE . Для них характерно применение высокопроизводительной системной шины, в слоты которой вставляются модули трех типов - процессорные, оперативной памяти и ввода-вывода. Обычные, более медленные шины ввода-вывода, например, PCI или VME64, подсоединяются уже к модулям ввода-вывода. Очевидно, что подобная конструкция обладает высокой степенью модульности и легко позволяет производить наращивание конфигурации, которое ограничивается только доступным числом слотов системной шины и ее производительностью.

В модулях памяти обычно используется технология DRAM, что позволяет достигнуть больших объемов памяти при относительно низкой цене. Однако скорость обмена данными между процессорами и памятью в таких серверах во много раз ниже, чем пропускная способность аналогичного тракта в векторных суперЭВМ, где оперативная память строится на более дорогой технологии ЯВАМ. В этом состоит одно из основных отличий в подходах к суперкомпьютерным вычислениям, применяемым для многопроцессорных векторных ЭВМ и SMP-серверов. В первых обычно имеется относительно небольшое число векторных регистров, поэтому, как уже отмечалось, для поддержания высокой производительности необходимо быстро загружать в них данные или, наоборот, записывать из них информацию в оперативную память. Таким образом, требуется высокая производительность тракта процессор-память.

В SMP-серверах пропускная способность модулей памяти гораздо ниже, а общая скорость обмена данными с процессорными модулями ограничивается также (хотя и высокой) пропускной способностью шины. К тому же системная шина может быть занята передачей данных за счет работы модулей ввода-вывода. Для иллюстрации порядков величин можно привести следующие данные: гарантированная пропускная способность системной шины TurboLaser в AlphaServer 8200/8400 составляет 1.6 Гбайт/с и 1.2 Гбайт/с - для шины POWERpath-2 в POWER CHALLENGE, а пропускная способность оперативной памяти в Сгау Т90 равна 800 Гбайт/с. Поэтому в SMP-серверах разработчики стремятся уменьшить саму потребность в обменах данными на тракте процессорыпамять. С этой целью вместо маленького по величине объема памяти векторных регистров (именно поэтому они требуют достаточно частой перезагрузки) микропроцессоры в суперкомпьютерных SMP-системах снабжаются кэш - памятью очень большого размера, например, по 4 Мбайт на микропроцессор в AlphaServer 8200/8400 и POWER CHAL ENGE. В результате для очень широкого спектра приложений удается достичь поставленной цели.

Современные компьютеры SMP-архитектуры и кластеры на их основе имеют во многом характеристики, сравнимые с большими векторными суперЭВМ, за исключением пропускной способности оперативной памяти; Если добавить к этому низкие эксплуатационные расходы на обслуживание SMP-систем, то становится понятно, почему применение этих гораздо более дешевых (по сравнению с векторными) суперкомпьютеров получило за последние 2 года широкое распространение.

Анализируемые здесь SMP-системы не обязаны иметь шинную архитектуру. Вместо шины может использоваться коммутатор. Подобный подход применяется, например, внутри гиперузлов компьютеров Convex Exemplar SPP . Однако почти все сказанное в данном разделе сохраняет силу и в этом случае.

Кластеры [MIMD]

Кластеры являются самым дешевым способом наращивания производительности уже инсталлированных компьютеров. Фактически кластер представляет собой набор из нескольких ЭВМ, соединенных через некоторую коммуникационную инфраструктуру. В качестве такой структуры может выступать обычная компьютерная сеть, однако из соображений повышения производительности желательно иметь высокоскоростные соединения (FDDI/ATM/HiPPI и т.п.). Кластеры могут быть образованы как из различных компьютеров (гетперогенные кластеры), так и из одинаковых (гомогенные кластеры). Очевидно, что все такие системы относятся к классу MIMD. Кластеры являются классическим примером слабо связанных систем.

Преимуществом кластерного подхода по сравнению с SMP-серверами является улучшение возможностей масштабирования. В отличие от серверов SMP-архитектуры, где наращивание конфигурации ограничено пропускной способностью шины, добавление компьютеров в кластер позволяет увеличивать пропускную способность оперативной памяти и подсистем ввода-вывода.

В кластерных системах для организации взаимодействия между процессами, выполняющимися на разных компьютерах при решении одной задачи, применяются различные модели обмена сообщениями (PVM, MPI и т.п.). Однако задача распараллеливания в таких системах с распределенной между отдельными компьютерами памятью в рамках этих моделей является гораздо более сложной, чем в модели общего поля памяти, как например, в SMP-серверах. К этому следует добавить чисто аппаратные проблемы наличия задержек при обменах сообщениями и повышения скорости передачи данных. Поэтому спектр задач, которые могут эффективно решаться на кластерных системах, по сравнению с симметричными сильно связанными системами достаточно ограничен. Для параллельной обработки запросов к базам данных в подобных системах также имеются свои собственные подходы.

В кластеры могут объединяться различные суперкомпьютеры, например, минисуперЭВМ Сгау J90, однако наиболее известными кластерами в мире суперЭВМ являются IBM SP2 и SGI POWER CHAL ENGEarray. Возможность наличия большого числа процессорных узлов в SP2 позволяет одновременно отнести этот компьютер и к классу MPP-систем.

МРР-системы (MIMD)

Основным признаком, по которому систему относят к архитектуре MPP, является число процессоров (n). Строгой границы не существует, но обычно считается, что при n >= 128 - это уже МРР, а при n <= 32 - еще нет.

Вовсе не обязательно, чтобы MPP-система имела распределенную оперативную память, при которой каждый процессорный узел имеет свою локальную память. Так, например, компьютеры SPP1000/XA и SPP1200/XA - пример систем с массовым параллелизмом, память которых физически распределена между гиперузлами, но логически является общей для всей ЭВМ. Тем не менее, большинство MPP-компьютеров имеют как логически, так и физически распределенную память.

В любом случае MPP-системы принадлежат к классу MIMD. Если говорить об MPP-компьютерах с распределенной памятью и отвлечься от организации ввода-вывода, то эта архитектура является естественным расширением кластерной на большое число узлов. Поэтому для таких систем характерны все преимущества и недостатки кластеров. Причем в связи с повышенным числом процессорных узлов как плюсы, так и минусы становятся гораздо весомее (процессорный узел это блок ЭВМ, который может содержать несколько процессоров, например, как в компьютерах SNI/Pyramid RM1000, и сам по себе иметь архитектуру SMP).

Благодаря масштабируемости, именно MPP-системы являются сегодня лидерами по достигнутой производительности компьютера; наиболее яркий пример этому - Intel Paragon. С другой стороны, проблемы распараллеливания в MPP-системах по сравнению с кластерами, содержащими немного процессоров, становятся еще более трудно разрешимыми. Кроме того, приращение производительности с ростом числа процессоров обычно вообще довольно быстро убывает. Легко нарастить теоретическую производительность ЭВМ, но гораздо труднее найти задачи, которые сумели бы эффективно загрузить процессорные узлы.

Сегодня не так уж много приложений могут эффективно выполняться на MPP-компьютере, кроме этого имеется еще проблема переносимости программ между MPP-системами, имеющими различную архитектуру. Предпринятая в последние годы попытка стандартизации моделей обмена сообщениями еще не снимает всех проблем. Эффективность распараллеливания во многих случаях сильно зависит от деталей архитектуры MPP-системы, например топологии соединения процессорных узлов.

Самой эффективной была бы топология, в которой любой узел мог бы напрямую связаться с любым другим узлом. Однако в MPP-системах это технически трудно реализуемо. Обычно процессорные узлы в современных MPP-компьютерах образуют или двумерную решетку (например, в SNI/Pyramid RM1000) или гиперкуб (как в суперкомпьютерах nCube).

Поскольку для синхронизации параллельно выполняющихся в узлах процессов необходим обмен сообщениями, которые должны доходить из любого узла системы в любой другой узел, важной характеристикой является диаметр системы с1 - максимальное расстояние между узлами. В случае двухмерной решетки d ~ sqrt(n), в случае гиперкуба d ~ 1n(n). Таким образом, при увеличении числа узлов архитектура гиперкуба является более выгодной.

Время передачи информации от узла к узлу зависит от стартовой задержки и скорости передачи. В любом случае за время передачи процессорные узлы успевают выполнить много команд, и это соотношение быстродействия процессорных узлов и передающей системы, вероятно, будет сохраняться - прогресс в производительности процессоров гораздо больше, чем в пропускной способности каналов связи. Поэтому инфраструктура каналов связи является одного из главных компонентов MPP-компьютера.

Страницы: 1, 2, 3, 4, 5, 6


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.