RSS    

   Реферат: Оптимизация структуры стохастического графа c переменной интенсивностью выполнения работ

46. Включить работы множества  в множество оконченных работ .

(49) , где .

47. Определить множество работ, каждая из которых на шаге  может быть включена в ресурсный граф.

(50) , где

48. Пронумеруем работы множества .

, =1, 2, . . . , ,

число работ, включенных в ресурсный граф на шаге  .

49. Определить код работы в ресурсном графе с учетом разбивки работ на части.

(51) .

В ресурсном графе части работ , на каждой из которых число ресурсов постоянно, рассматриваются как самостоятельные работы.

50. Произвести перекодирование условий работ множества .

51. Проверить выполняется ли условие .Если условие выполняется, то принять  и перейти к п. 2;

если нетк п. 52.

52. Конец.  

4. Пример.

На разработку, состоящую из 2-х параллельно выполняемых проектов, выделено два различных вида ресурсов по 2 единицы каждого. Исходные данные решения задачи приведены в табл. 1, где код работы  состоит из кода проекта и кода работы в проекте. Первый проект содержит решающий результат с двумя альтернативами: 14,15.

Каждой альтернативе приписана aприорная вероятность: 0,7, 0,3. Требуется в области  определить экстремальный граф, включающий альтернативу 14, вероятность которой равна 0,7. В табл. 2, где код работы с учетом разбивки работ на части, представлен экстремальный ресурсный граф, полученный алгоритмом, основные идеи которого были изложены выше. Более подробно пример рассматривается в [20, 21]. 

Таблица 1. Исходные данные.

j

  

 Xj

 cj

  

 Dj

1 11 0 1 1 2 6
2 12 0 1 2 2 12
3 13 11 1 1 2 8
4 14 13, 12 1 2 2 4
5 15 13, 12 1 1 2 10
6 21 0 1 1 1 4
7 22 0 1 2 1 2
8 23 21 1 1 2 10
9 24 22 1 2 2 4

Таблица 2. Экстремальный ресурсный граф.

 

 

 

 nj

 

 

  

21 21 0 1 1 0 4 4
11 11 0 1 1 0 4 4
11 12 21, 11 1 2 4 1 5
12 13 0 2 1 0 2 2
12 14 13 2 0 2 2 4
12 15 14, 23 2 2 4 5 9
22 22 0 2 1 0 2 2
13 16 12 1 2 5 4 9
24 23 22, 13 2 2 2 2 4
14 17 16, 15 2 2 9 2 11
23 24 16, 21 1 2 9 5 14

Обоснованность задания критерия оптимальности (1) в виде графа следует из теоремы 1.

Страницы: 1, 2, 3, 4, 5


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

© 2010.