RSS    

   Реферат: Мониторы

3. Обобщенная структура и особенности функционирования
 мониторов

3.1. CRT - мониторы

Сегодня самый распространенный тип мониторов - это CRT (Cathode Ray Tube) мониторы. Как видно из названия, в основе всех подобных мониторов лежит катодно-лучевая трубка, но это дословный перевод, технически правильно говорить электронно-лучевая трубка (ЭЛТ). Иногда CRT расшифровывается и как Cathode Ray Terminal, что соответствует уже не самой трубке, а устройству, на ней основанному.

Используемая в этом типе мониторов технология была разработана немецким ученым Фердинандом Брауном в 1897г. и первоначально создавалась в качестве специального инструмента для измерения переменного тока, то есть для осциллографа.

Самым важным элементом монитора является кинескоп, называемый также электронно-лучевой трубкой. Кинескоп состоит из герметичной стеклянной трубки, внутри которой находится вакуум, то есть весь воздух удален. Один из концов трубки узкий и длинный - это горловина, а другой - широкий и достаточно плоский - это экран. С фронтальной стороны внутренняя часть стекла трубки покрыта люминофором (luminophor). В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов - иттрия, эрбия и т.п. Люминофор - это вещество, которое испускает свет при бомбардировке его заряженными частицами. Заметим, что иногда люминофор называют фосфором, но это не верно, т.к. люминофор, используемый в покрытии ЭЛТ, ничего не имеет общего с фосфором. Более того, фосфор "светится" в результате взаимодействия с кислородом воздуха при окислении до P2O5 и "свечение" происходит небольшое количество времени (кстати, белый фосфор - сильный яд).

Для создания изображения в ЭЛТ-мониторе используется электронная пушка, откуда под действием сильного электростатического поля исходит поток электронов. Сквозь металлическую маску или решетку они попадают на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точками.

Поток электронов (луч) может отклоняться в вертикальной и горизонтальной плоскости, что обеспечивает последовательное попадание его на все поле экрана. Отклонение луча происходит посредством отклоняющей системы (рис 3).

Отклоняющая система состоит из нескольких катушек индуктивности, размещенных у горловины кинескопа. С помощью переменного магнитного поля две катушки создают отклонение пучка электронов в горизонтальной плоскости, а другие две - в вертикальной.

Путь электронного луча на экране схематично показан на рис. 4. Сплошные линии - это активный ход луча, пунктир - обратный.

Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, т.е. поток электронов заставляет точки люминофора светиться. Эти светящиеся точки люминофора формируют изображение, которое вы видите на вашем мониторе. Как правило, в цветном CRT мониторе используется три электронные пушки, в отличие от одной пушки, применяемой в монохромных мониторах, которые сейчас практически не производятся.

Известно, что глаза человека реагируют на основные цвета: красный (Red), зеленый (Green) и синий (Blue) и на их комбинации, которые создают бесконечное число цветов. Люминофорный слой, покрывающий фронтальную часть электронно-лучевой трубки, состоит из очень маленьких элементов (настолько маленьких, что человеческий глаз не всегда может различить их). Эти люминофорные элементы воспроизводят основные цвета, фактически имеются три типа разноцветных частиц, чьи цвета соответствуют основным цветам RGB (отсюда и название группы из люминофорных элементов - триады).

Люминофор начинает светиться, как было сказано выше, под воздействием ускоренных электронов, которые создаются тремя электронными пушками. Каждая из трех пушек соответствует одному из основных цветов и посылает пучок электронов на различные люминофорные частицы, чье свечение основными цветами с различной интенсивностью комбинируется и в результате формируется изображение с требуемым цветом.

Для управления электронно-лучевой трубкой необходима и управляющая электроника, качество которой во многом определяет и качество монитора. Кстати, именно различие в качестве управляющей электроники, создаваемой разными производителями, является одним из критериев определяющих разницу между мониторами с одинаковой электронно-лучевой трубкой.

Итак, каждая пушка излучает электронный луч (или поток, или пучок), который влияет на люминофорные элементы разного цвета (зеленого, красного или синего). Понятно, что электронный луч, предназначенный для красных люминофорных элементов, не должен влиять на люминофор зеленого или синего цвета. Чтобы добиться такого действия используется специальная маска, чья структура зависит от типа кинескопов от разных производителей, обеспечивающая дискретность (растровость) изображения. ЭЛТ можно разбить на два класса - трехлучевые с дельтаобразным расположением электронных пушек и с планарным расположением электронных пушек. В этих трубках применяются щелевые и теневые маски, хотя правильнее сказать, что они все теневые. При этом трубки с планарным расположением электронных пушек еще называют кинескопами с самосведением лучей, так как воздействие магнитного поля Земли на три планарно расположенных луча практически одинаково и при изменении положения трубки относительно поля Земли не требуется производить дополнительные регулировки.

3.1.1. Виды масок ЭЛТ-мониторов

Теневая маска

Теневая маска (shadow mask) - это самый распространенный тип масок, она применяется со времени изобретения первых цветных кинескопов. Поверхность у кинескопов с теневой маской обычно сферической формы (выпуклая). то сделано для того, чтобы электронный луч в центре экрана и по краям имел одинаковую толщину.

Теневая маска состоит из металлической пластины с круглыми отверстиями, которые занимают примерно 25% площади. Находится маска перед стеклянной трубкой с люминофорным слоем. Теневая маска создает решетку с однородными точками (еще называемыми триады), где каждая такая точка состоит из трех люминофорных элементов основных цветов - зеленного, красного и синего - которые светятся с различной интенсивностью под воздействием лучей из электронных пушек. Изменением тока каждого из трех электронных лучей можно добиться произвольного цвета элемента изображения, образуемого триадой точек.

Апертурная решетка

Есть еще один вид трубок, в которых используется "Aperture Grille" (апертурная решетка). Эти трубки стали известны под именем Trinitron и впервые были представлены на рынке компанией Sony в 1982 году.

Это решение не включает в себя металлическую решетку с отверстиями, как в случае с теневой маской, а имеет решетку из вертикальных линий. Вместо точек с люминофорными элементами трех основных цветов, апертурная решетка содержит серию нитей, состоящих из люминофорных элементов выстроенных в виде вертикальных полос трех основных цветов. Такая система обеспечивает высокую контрастность изображения и хорошую насыщенность цветов, что вместе обеспечивает высокое качество мониторов с трубками на основе этой технологии.

Щелевая маска

Щелевая маска (slot mask) - это технология широко применяется компанией NEC под именем "CromaClear". Это решение на практике представляет собой комбинацию теневой маски и апертурной решетки. В данном случае люминофорные элементы расположены в вертикальных эллиптических ячейках, а маска сделана из вертикальных линий. Фактически вертикальные полосы разделены на эллиптические ячейки, которые содержат группы из трех люминофорных элементов трех основных цвето

3.2. LCD - мониторы

Экраны LCD-мониторов сделаны из вещества (цианофенил), которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности оптических), связанных с упорядоченностью в ориентации молекул.

Как ни странно, но жидкие кристаллы старше ЭЛТ почти на десять лет, первое описание этих веществ было сделано еще в 1888 г. Однако долгое время никто не знал, как их применить на практике. И вот в конце 1966 г. корпорация RCA продемонстрировала прототип LCD-монитора – цифровые часы.

Работа ЖКД основана на явлении поляризации светового потока. Известно, что так называемые кристаллы поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Таким образом поляроид как бы "просеивает" свет, данный эффект называется поляризацией света. Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами.

Основываясь на этом открытии и в результате дальнейших исследований, стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения. Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в электронных часах, а затем их стали использовать в мониторах для портативных компьютеров. Сегодня, в результате прогресса в этой области, начинают получать все большее распространение LCD-дисплеи для настольных компьютеров.

Экран LCD монитора представляет собой массив маленьких сегментов (называемых пикселями), которыми можно манипулировать для отображения информации. LCD монитор имеет несколько слоев, где ключевую роль играют две панели, сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка, которые собственно и содержат тонкий слой жидких кристаллов между собой. На панелях имеются бороздки, которые направляют кристаллы, сообщая им специальную ориентацию. Бороздки расположены таким образом, что они параллельны на каждой панели, но перпендикулярны между двумя панелями. Продольные бороздки получаются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается.

При появлении электрического поля, молекулы жидких кристаллов частично выстраиваются вертикально вдоль поля, угол поворота плоскости поляризации света становится отличным от 90 градусов и свет беспрепятственно проходит через жидкие кристаллы.

Поворот плоскости поляризации светового луча незаметен для глаза, поэтому возникла необходимость добавить к стеклянным панелям еще два других слоя, представляющих собой поляризационные фильтры. Эти фильтры пропускают только ту компоненту светового пучка, у которой ось поляризации соответствует заданному. Поэтому при прохождении поляризатора пучок света будет ослаблен в зависимости от угла между его плоскостью поляризации и осью поляризатора. При отсутствии напряжения ячейка прозрачна, так как первый поляризатор пропускает только свет с соответствующим вектором поляризации.

Технологические новшества позволили ограничить их размеры величиной маленькой точки, соответственно на одной и той же площади экрана можно расположить большее число электродов, что увеличивает разрешение LCD монитора, и позволяет нам отображать даже сложные изображения в цвете. Для вывода цветного изображения необходима подсветка монитора сзади, таким образом, чтобы свет исходил из задней части LCD дисплея. Это необходимо для того, чтобы можно было наблюдать изображение с хорошим качеством, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основные компоненты. Комбинируя три основные цвета для каждой точки или пикселя экрана, появляется возможность воспроизвести любой цвет.

4. Сравнительная характеристика различных типов мониторов разных фирм производителей

Belinea 103035

Достоинства. Данная модель пришла на смену популярным мониторам Belinea предыдущего поколения. В новом мониторе улучшены частотные характеристики: например, полоса пропускания монитора 103035 составляет 150 МГц, а диапазон кадровых частот расширен до 160 Гц. Монитор 103035 имеет более современный дизайн и улучшенные эргономические свойства, обладает достаточно широкими функциями настройки (из нестандартных опций следует отметить возможность масштабирования картинки). Новый монитор соответствует требованиям TCO’99.

Недостатки. К недостаткам можно отнести заметно выпуклый экран и неустранимый регулировками муар.

Daewoo 719BF

Достоинства. Разработанный с применением последних технических достижений, имеющий плоский экран монитор 719BF способен понравиться даже весьма взыскательным пользователям. Высокая четкость изображения; точная фокусировка; чистые цвета; превосходное сведение; стабильно высокие результаты в цветопередаче, выражавшиеся в более естественной, чем у конкурентов, передаче цвета, глубине и яркости красок, а также в читаемости текста. Монитор полностью соответствует самому строгому стандарту TCO’99.

Недостатки. Из недостатков можно отметить только заметную неустойчивость к перепадам яркости и неудобное меню с меньшим количеством настроек, чем у других моделей.

LG Flatron 795FT Plus

Достоинства. Основная изюминка моделей F — фирменная разработка LG: единственный не визуально, а реально плоский кинескоп Flatron. Стильный, современный дизайн. Хорошо разработанный сайт производителя с достаточно подробной информацией по технологии изготовления и сопровождением. Высокая резкость изображения; чистые цвета, равномерное заполнение однотонных полей. Удобное меню настроек с сенсорным управлением.

Недостатки. При высоких технических характеристиках этот монитор показал среднее качество цветопередачи.

MAG ProVision 796FD

Достоинства. Тайваньская компания MAG, специализирующаяся только на производстве мониторов, уже давно поставляет продукцию на наш рынок. Новый монитор MAG 796FD с ЭЛТ Sony FD Trinitron и хорошим антистатическим и антибликовым покрытием продемонстрировал высокие технические характеристики практически во всех испытаниях. Ясные и чистые цвета; хорошая яркость и контрастность; превосходное сведение и стабильная устойчивость к перепадам яркости. Кроме известных регулировок, здесь имеются еще десяток вариантов геометрической коррекции, раздельное управление фокусом по вертикали и по горизонтали, развитое управление цветовой температурой (включая раздельное управление цветовой температурой по трем лучам) и, кстати, очень удобная реализация моментального переключения цветовой температуры отдельной кнопкой на лицевой панели монитора.

Монитор отвечает требованиям стандарта ТСО’99.

Недостатки. Некоторые погрешности фокусировки на углах экрана; нестабильная цветопередача.

5. Перспективы развития и применения мониторов

По прогнозам экспертов, в будущем будет происходить постепенное слияние мониторов и телевизоров, поэтому привычные экраны мониторов с соотношением величин сторон экрана 4:3, вероятно, будут приведены к стандарту телевидения высокой четкости (ТВЧ, с разрешением 1920 x 1080) и DVD, с соотношением длин сторон изображения 16:9.

Если сегодня конкуренцию CRT-дисплеям в основном составляют LCD-дисплеи, то на подходе целый ряд технологий, которые обещают потеснить электронно-лучевые трубки. В таблице показано несколько технологий, на основе которых уже сегодня производят плоские дисплеи.

По принципу действия их можно классифицировать следующим образом: плазменные PDP (Plasms Display Panel), электролюминесцентные ELD (Electro Luminiscent Display), FED (Field Emission Display), VFD (Vacuum Fluorescent Display), LED (LightEmitting Diode).

Отдельно следует отметить последние разработки компании CDT в области новых технологий LEP (Light Emitting Polymer) и OLED (Organic Light Emitting Diode Displays).

Заключение

Если говорить об изменениях мониторов в чисто геометрическом плане, то действительно можно сказать, что они эволюционируют от трубки к пластине. Традиционные электронно-лучевые трубки становятся все шире и короче, появляются также новые технологии мониторов, позволяющие создавать панели, которые в буквальном смысле можно вешать на стену. Впрочем, геометрический подход не подразумевает под собой ничего, кроме формы; ученые активно работают и над традиционными технологиями, постоянно совершенствуя их качество, и одновременно создают принципиально новые. Некоторые из этих технологий уже доведены до уровня промышленных изделий, другие еще только проходят лабораторные испытания, однако уже сегодня обещают перегнать в характеристиках своих нынешних собратьев.


Литература

1.   Web - сервер журнала Компьютер Пресс http://www.compress.ru

2.   Сайт «Мониторы: ВДТ» http://monitors.narod.ru

3.   Web - сервер журнала Компьютерра http://www.computerra.ru


[1] Астигматизм (от греч. а - отрицательная частица и stigme - точка), недостаток оптической системы, получающийся вследствие неодинаковой кривизны оптической поверхности в разных плоскостях сечения падающего на неё светового пучка. Сферическая волновая поверхность после прохождения оптической системы деформируется и перестаёт быть сферической.


Страницы: 1, 2, 3


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.