RSS    

   Реферат: Гидро-климатические условия на космических снимках

Спутниковые съемки содержат обширную информацию о снежном покрове, которая необходима для оценки влагозапасов, объема и режима поступления талой воды в речную сеть. При использовании многократных съемок в видимом (0,4—0,8 мкм), ближнем инфракрасном (ИК) (0,7—1,3 мкм) и тепловом ИК (8—12 мкм) спектральных диапазонах можно определять степень заснеженности водосборов, высотное по­ложение заснеженных участков, продолжительность залегания:

снега по высотным поясам, его глубину и плотность. На космических снимках четко фиксируется площадь тающего снега. На белом фоне снежного покрова уверенно дешифрируются верхние звенья речной сети, так как обильно пропитанный водой снег по тальевгам выделяется более темными узкими полосами. После схода снега эту ин формацию об истоках получить уже невозможно.

Космическая съемка очень эффективна для изучения сов ременного и древнего оледенения. При фотографировании горных районов с космических орбит уменьшаются плановые искажения, которые достигают больших значений на материалах аэрофотосъемки. Даже на мелкомасштабных дистанционных материалах хорошо просматриваются тело ледника, троговые долины и морены. Имеется опыт реконструкции древнего оледенения и конкретизации парамет­ров четвертичных ледников в максимальную фазу их развития.

Белый тон фотоизображения льда является основным дешифровочным признаком наледей. Кроме прямых признаков (тона, структуры и формы) при распознавании наледей под­земных вод учитывается ряд косвенных признаков дешифри­рования: географическое положение бассейна, высотный пояс, приуроченность к определенным формам рельефа и линиям тектонических нарушений, геологическое строение территории и др. Распознавание наледных тел и наледных полян вполне' возможно на черно-белых снимках, полученных в видимом диапазоне спектра. Но наибольшей гляциологической:

информацией обладают снимки в ближней инфракрасной зо­не. Они обеспечивают более высокий контраст фотоизображе­ния открытого льда и окружающего ландшафта независимо от их физиономичных черт. На спектрозональных снимках лучше выделяются переувлажненные грунты, поэтому они предпочти­тельны для дешифрирования наледных полян после стаивания льда. Исследования показали, что с уменьшением масштаба снимка главнейший признак дешифрирования наледных полян — структура фотоизображения ослабевает и в качестве основного признака выступает фототон.

Высокая контрастность льда и открытой водной поверхно­сти позволяет использовать космические снимки для изучения .ледовых явлений в реках, на озерах и водохранилищах, в мо­рях. Оперативное слежение за динамикой разрушения речно­го льда помогает выявлять заторные участки и прогнозировать наводнения. Для организации такого мониторинга успешно используются данные, получаемые с метеорологиче­ских спутников.

Материалы дистанционного зондирования применяют при изучении транзита речных наносов и режима осадконакопления в прибрежных зонах озер и морей. Область аккумуляции твердого стока в устьях рек дешифрируется по светлому фо­тотону водной поверхности. Это дает возможность следить за динамикой подводного рельефа, заносимостью аква­торий, процессами переформирования берегов.

С помощью аэрокосмической фотосъемки и телевизионной информации успешно изучается динамика речных разливов. По разной степени почернения фототона на снимках достоверно дешифрируются границы и площади разливов, по­следовательность затопления поймы, характер происходящих в ней эрозионно-аккумулятивных процессов и ряд других ги­дрологических явлений. Такие сведения особенно важны при исследовании наводнений на неизученных реках, что имеет большое практическое значение в условиях Сибири.

Особую сложность при гидрологическом дешифрировании дистанционной информации представляет процесс распозна­вания малых рек. Например, в залесенных районах кроны де­ревьев могут полностью скрывать русла шириной до 5—6 м, в связи с чем их выявление нередко затруднено даже на очень крупномасштабных (1:2000 — 1:6000) снимках. Однако во многих случаях при определенных условиях съемки и со­стоянии ландшафта можно получить удовлетворительные ре­зультаты дешифрирования малых рек даже на мелкомасштаб­ных космических фотоснимках.

Так, на залесенных равнинных территориях во время ин­тенсивного снеготаяния в верхнем звене речной сети начинает скапливаться большое количество талой воды. Благодаря контрастному фотоизображению водной поверхности и снега (воды и почвенно-растительного покрова) на космических снимках любого масштаба становятся хорошо заметными да­же мельчайшие водотоки. Это позволяет детально изучить строение речной сети и составить подробную гидро­графическую карту.

Для тундровых районов Сибири характерна задержка схода снега даже в незначительных углублениях рельефа, где в ре­зультате метелевого переноса мощность снежного покрова становится выше фоновой. На 1—2 недели позднее снег стаи­вает также на затененных уступах микрорельефа. При весен­ней съемке этот снег может служить индикатором речной се­ти. После схода снега мелкие тундровые реки на космических снимках не просматриваются.

В условиях залесенной местности в качестве индикаторов малых рек нередко удается использовать растительность. Лес чутко реагирует на изменение условий произра­стания — света, тепла, влаги, минеральной пищи и др. В каждой природной зоне и физико-географической провинции экологические особенности древесных пород различны, поэто­му и индикаторная роль их меняется. Например, на относи­тельно увлажненных днищах долин может произрастать в од­них климатических условиях ель, в других — сосна или бере­за. Особенно  хорошо   видовой   состав растительности разделяется на спектрозональных снимках, поэтому при ги­дрологическом дешифрировании такие материалы более цен­ны. В отдельных случаях эффективно синтезирование черно-белых узкоканальных изображений.

Оттенению рисунка речной сети на мелкомасштабных ко­смических снимках способствует глубокий врез речных долин, особенно в малоконтурных горно-степных районах. Повышению контраста способствует не только затененность склонов и днищ глубоких долин, но и развитие в прирусловой части более мощной растительности.

Широко используются косвенные признаки дешифрирова­ния малых рек в освоенных сельскохозяйственных районах. Надежным индикатором рек являются пруды. Четко выделяются долины водотоков, оконтуренные участками па­шен.

Дешифровочные признаки динамики вод подробно рас­смотрены В. И. Орловым. Несмотря на то, что им использованы в основном материалы аэрофотосъемки, изло­женная методика комплексного анализа хода развития компо­нентов природы и их взаимосвязей может быть применима к фотоснимкам любого масштаба. Достоинства космических методов здесь особенно ощутимы, так как при большом территориальном обзоре динамические процессы можно анализировать с учетом более широкого спектра гео­графических закономерностей и взаимосвязей между компо­нентами природной среды.

Как видно из приведенных примеров, в качестве косвенных признаков дешифрирования вод могут выступать не только долговременные, но и кратковременные состояния элементов местности. Все их перечислить невозможно, так как они специфичны для конкретных ландшафтов и условий съемки. На­ша задача заключалась в том, чтобы обратить внимание ис­следователя на необходимость широкого географического под­хода к процессу интерпретации снимка.


ЗАКЛЮЧЕНИЕ

Анализ ритмики природной среды и выделение наиболее устойчивых состояний ее компонентов является необходимым условием географически достоверного картографического изо­бражения природного ландшафта, его коренных черт, особен­ностей строения и направления развития. Наиболее значимы такие исследования при изучении и картографировании вод дистанционными методами.

В основу выполненной работы положено представление о том, что в условиях многообразия гидрологического режима рек, закономерно отражающего широкий спектр физико-гео­графических условий их бассейнов, формируются зональные и широтно-поясные инварианты стока и других гидрологиче­ских показателей. Эти инварианты можно считать достаточно стабильными, так как они трансформируются не в порядке динамики геосистем, а в процессе эволюционного развития природной среды.

На большом фактическом материале Гидрометеослужбы показано, что для водных объектов с любым гидрологическим режимом, включая искусственно зарегулированные, таким инвариантом является картографический уровень воды, по со­стоянию на который должна изображаться гидрографическая сеть на карте.

Географическое обобщение уровенного режима рек с кар­тографических позиций позволило выявить гидрологический параметр, пространственное распределение которого тесно коррелирует с основными гидрометеоэлементами — осадками и стоком. На базе комплексной оценки гидролого-климатических, геолого-орографических и ландшафтных признаков построена карта этого параметра на территорию Сибири, с помощью которой можно находить картографический уровень воды по многолетним данным о режиме поверхностных вод, публикуемым Гидрометеослужбой.

Таким образом, главное значение работы заключается в обосновании жесткого опорного уровня воды рек и озер для нанесения его на топографические карты. Высота опорного уровня находится в зависимости от гидрологического режима водных объектов: для равнинных рек с весенним половодьем он является низким меженным, для горно-ледниковых рек — высоким половодным, для зарегулированных рек определяется характером пропуска стока и т. д. Картографический уровень обеспечивает географическую достоверность изображения ги­дрографической сети, так как выделяется по критерию типич­ности и может рассматриваться как картографический стан­дарт на уровень воды гидрографической сети.

Выполненные разработки, в том числе по гидрологическому дешифрированию аэрокосмических снимков, отображению на карте региональных особенностей вод и другим, имеют прак­тическую направленность. Еще раз подчеркнем, что качество гидрологической интерпретации аэрокосмических материалов (дешифрирование гидрологического режима рек, режима поемности, развития болото-образовательного процесса, особен­ностей руслового процесса и др.) определяется глубиной ландшафтной проработки территории.

Применение космической информации при изучении и кар­тографировании природных условий и ресурсов ставит на повестку дня необходимость решения ряда важных научных проблем, ориентированных на рациональное использование и охрану вод.

Первая проблема охватывает широкий комплекс природо­ведческих исследований, направленных на познание законо­мерностей естественного режима геосистем в различных при­родных зонах страны. Особый интерес представляет целевой анализ гидрологического режима вод аридных областей и вы­сокогорных районов. Нужна выработка целостной системы оценки динамических состояний вод применительно к задачам картографии. Иными словами, предстоит расширение «сибирских» рамок исследования до всей территории СССР и апробирование изложенной в книге методологии картографирова­ния вод в других регионах.

Вторая проблема состоит в более углубленной проработке механизмов трансформации природного режима водных объек­тов в условиях техногенного вмешательства и при ликвидации его последствий, то есть в цикле восстановления нарушенных геосистем. Последнее особенно актуально в связи с неизбеж­ной выработкой эксплуатационного ресурса гидротехнических сооружений и их демонтажа. Прогнозирование возможных в этих случаях кризисных ситуаций и их дистанционный и кар­тографический мониторинг пока не имеют достаточного науч­ного обоснования.

Одной из неотложных задач представляется  реализация «космического» обеспечения топографических и других крупно­масштабных тематических карт в виде масштабированных полистных фотосхем, составляемых по материалам ежегодных дистанционных съемок. Такая фотопродукция позволит поль­зователю иметь постоянно обновленную карту местности и осуществлять оперативный мониторинг природной среды.

Литература:

«ВОДЫ-АЭРОКОСМИЧЕСКИЙ СНИМОК-КАРТА» А.Я. Гиенко


Страницы: 1, 2, 3, 4


Новости


Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

                   

Новости

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.